X線構造解析
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "X線回折" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2012年1月)
X線を結晶に照射すると、ブラッグの法則を満たした方向にのみX線が回折され、結晶構造を反映したパターンが生じる。

X線回折(エックスせんかいせつ、: X‐ray diffraction、XRD)は、X線結晶格子回折を示す現象である。

1912年ドイツマックス・フォン・ラウエがこの現象を発見し、X線の正体が波長の短い電磁波であることを明らかにした。

逆にこの現象を利用して物質の結晶構造を調べることが可能である。このようにX線の回折の結果を解析して結晶内部で原子がどのように配列しているかを決定する手法をX線結晶構造解析あるいはX線回折法という。しばしばこれをX線回折と略して呼ぶ。他に同じように回折現象を利用する結晶構造解析の手法として、電子回折法中性子回折法がある。
歴史

1895年にヴィルヘルム・レントゲンがX線を発見。1912年にマックス・フォン・ラウエ硫化亜鉛結晶によるX線回折現象を発見し、続く1913年には、ヘンリー・ブラッグローレンス・ブラッグの父子がブラッグの法則を発表してX線回折による構造解析に理論的な基礎を与えた。1916年にはピーター・デバイパウル・シェラーが粉末試料から構造を解析するデバイ--シェラー法を発表し、X線回折による構造解析が広く行われるようになった。

マックス・ペルーツによる重原子同型置換法やハーバート・ハウプトマンによる直接法などの開発、さらには放射光コンピューターの進歩により、X線回折法は複雑な結晶にも適用が可能となった。

20世紀中頃には、X線回折法は構造生物学においても広く用いられるようになった。特に1953年のロザリンド・フランクリンによるDNAのX線回折写真は、二重螺旋構造解明に重要な寄与をしたことが知られている。X線回折による生体分子の構造解析はその重要性から繰り返しノーベル化学賞の対象ともなっており、1962年にジョン・ケンドリューヘモグロビン構造決定)、1964年にドロシー・ホジキンペニシリンなどの構造決定)、2003年にロデリック・マキノンカリウムチャネルの構造決定)が受賞している。
原理詳細は「運動学的回折理論」を参照実際に測定された粉末X線回折像の例。デバイ-シェラーリングと呼ばれる、入射光を中心とする同心円状のパターンが観察される。1つの同心円が1つの結晶面に対応する。透過光は強度が強すぎ、検出部を痛めることがあるため、ビームストッパーで遮られている。ブラッグの条件の模式図。図のような平行な格子面に入射する波を考えたとき、隣り合った面から反射する波の行路差は2dsinθとなる。この行路差が波長λの整数倍(n倍)になるとき、波は干渉して強め合う。これをブラッグの条件(2dsinθ=nλ)という。

ラウエは結晶中の原子の位置ベクトルrが、単位格子ベクトルをan、任意の整数unとして r = u 1 a 1 + u 2 a 2 + u 3 a 3 {\displaystyle \mathbf {r} =u_{1}\mathbf {a_{1}} +u_{2}\mathbf {a_{2}} +u_{3}\mathbf {a_{3}} }

と表されるとしてそれぞれの原子によって回折されたX線が干渉によって強め合う条件を導いた。干渉によって強め合う方向にのみ回折されたX線が観測される。

この条件は、散乱前後のX線の波数ベクトル(方向が波の進行方向で大きさが波数と等しいベクトル)の差(散乱ベクトル)をΔk、任意の整数をvnとして a 1 ⋅ Δ k = v 1 {\displaystyle \mathbf {a_{1}} \cdot \Delta \mathbf {k} =v_{1}} a 2 ⋅ Δ k = v 2 {\displaystyle \mathbf {a_{2}} \cdot \Delta \mathbf {k} =v_{2}} a 3 ⋅ Δ k = v 3 {\displaystyle \mathbf {a_{3}} \cdot \Delta \mathbf {k} =v_{3}}

と表される。これをラウエの条件という。

これに対してブラッグ父子は、X線回折を結晶中の原子が作る面(原子網面)がX線を反射し、平行な別の2つの面に反射されたX線が干渉によって強め合う現象と解釈してより簡素な条件を導いた。この条件は2つの面の間隔をd、X線と平面のなす角をθ、任意の整数n、X線の波長λとすると 2 d sin ⁡ θ = n λ {\displaystyle 2d\sin \theta =n\lambda }

と表される。これをブラッグの条件という。

ラウエの条件とブラッグの条件はまったく等価であり、これらの条件を結晶格子とX線の入射、回折の幾何的配置が満たしたときにはじめてX線回折が観測できる。
原子散乱因子

ラウエやブラッグは点状の原子がX線を回折するものとして扱ったが、実際にX線を回折するのは原子中に広がった分布を持つ電子である。位置ベクトルrの位置にある微小体積dV中で散乱されるX線の振幅はその位置での電子密度ρ(r)に比例する。よって原子がX線を回折する場合の散乱波の振幅fはこれを全空間に渡って積分したものになる。 f = ∫ ρ ( r ) e 2 π i r ⋅ Δ k d V {\displaystyle f=\int \rho (\mathbf {r} )e^{2\pi i\mathbf {r} \cdot \Delta \mathbf {k} }dV}

このfを原子散乱因子という。
結晶構造因子

結晶においても同様の式が成立する。ここで、結晶中の電子密度はその各原子の電子密度の和で近似できるとする。位置ベクトルriの位置にある原子の原子散乱因子fiを使って結晶の散乱因子Fは F = ∑ i f i e 2 π i r i ⋅ Δ k {\displaystyle F=\sum _{i}f_{i}e^{2\pi i\mathbf {r_{i}} \cdot \Delta \mathbf {k} }}

と書き換えられる。これのFを結晶構造因子という。結晶構造因子は一般的に複素数となる。

X線の散乱強度は結晶構造因子の絶対値の2乗に比例する。結晶によるX線の積分回折強度は I = I e L 。 F 。 2 N 2 {\displaystyle I=I_{e}L|F|^{2}N^{2}} で表される。 I e {\displaystyle I_{e}} は1個の電子の散乱強度、Nは結晶中の単位胞の数、Lは実験条件に依存する係数で、吸収因子を含むものとする。結晶構造解析は測定したX線の散乱強度から結晶構造因子を求め、さらにそこから結晶を構成する原子を同定する作業である。
装置

X線回折計はX線の発生部、試料室、検出部からなる。

X線の発生部は通常X線管球が使用される。これは陰極で発生させた熱電子を対陰極(陽極)の金属に衝突させてX線を発生させるものである。対陰極に使用される金属に応じた特性X線とバックグラウンドとして白色X線が放射される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:28 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef