NAND型フラッシュメモリ
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

NAND型フラッシュメモリでは上書き動作が行えないため、(書き込み可能な空きページがなければ)書き換えない部分を読み出して別に保持し、そのブロック全体を消去してからブロックを書き込む動作が求められる[2]。以下では基本動作を説明し、ページとブロックに関する詳しい動作の説明は後述する。
消去
消去はブロック単位で行われ[2]、消去動作はP型半導体層に電圧をかけて浮遊ゲートから電子を引き抜くことで行われる[3]
書き込み
情報の書き込みは、量子トンネル効果により電子を浮遊ゲート内に注入することで行われる[3]。回路基板であるN型半導体を接地電位にし、微小な電流によって制御ゲートに書き込み電圧を印加する。浮遊ゲート内に蓄積された電子が情報を記憶する。書き込みはページ単位で行われ[2]、同一ページ内の全てのセルに対して、同時に制御ゲートに書き込み電圧を印加することで書き込み動作が行われる。
読み出し
ページ単位で読み出し動作が行われる。選択しないセルの制御ゲートに電圧をかけ導通状態にする。選択したセルの浮遊ゲートに電子がある一定量ある場合にはソースとドレイン間に電流があまり流れず[1]、この状態が0とされる[4]。また、浮遊ゲートに電子がある一定量ない場合にはソースとドレイン間に電流が比較的流れ[1]、この状態が1とされる[4]
SLCとMLC詳細は「フラッシュメモリ#SLCとMLCとTLC」を参照

1つのセルの浮遊ゲートにある電子の蓄積量、つまり電荷の量が"Hi"か"Low"かで1ビットの情報を記録する方式を「SLC」(Single Level Cell) と呼ぶ[1]。また、電荷の量の違いを4つ以上の多値で判断することで2ビット以上を記録する方式を「MLC」(Multi Level Cell) と呼ぶ[1]

電荷量の区別のため、2ビットのものを単に「MLC」として、3ビットのものを「TLC」(Triple Level Cell) と表記する場合や、また、2ビットのものを「MLC-2」、3ビットのものを「MLC-3」などと表すことがある。
ブロックとページ

NAND型では、セルを駆動するのに必要な導線を複数のセルで共有している。このためデータの書き込み、読み込みはページと呼ばれる複数ビット単位で、消去はブロックとよばれる前述のページを複数でひとまとめにした単位で一括して行われる。このためNAND型フラッシュメモリの動作は以下の3つが基本となる。

ページ読み出し

ページ書き込み

ブロック消去

標準的なSLCでのページ/ブロック構成


1ページ:2,112バイト (2,048+64)

ユーザデータエリア:2,048バイト

冗長エリア:64バイト


1ブロック:64ページ、135,168バイト(2,112×64 ユーザデータ131,072バイト)
[注釈 1]
ブロックあたりのページ数は1列に直列にするセルの数になる。1ページ2,112バイト、1ブロック64ページの場合、1ブロックにはセル64素子を直列にした列が16,896列 (2,112×8) あることになる。
ブロックとページの弊害
上記のように消去動作は複数ページを含むブロック単位でしか行えず、また、1動作では上書きできずに消去してから書き込みを行う必要があるため、1ページの書き替えでも(SLCの場合)一度1ブロック64ページ全ての内容をNAND型フラッシュメモリの外部に読み出して、一時的に保持しておき、1ブロック64ページ全てを消去する必要がある。NAND型フラッシュメモリの外部の記憶領域で必要な書き換えの加工処理を行ってから、その消去済みのブロックに改めて書き戻す動作が行われる。
寿命「フラッシュメモリ#寿命」も参照

フラッシュメモリにも寿命がある。書き換え可能回数に上限があるほか、記録内容の保持期間も有限(最大で10年から数十年)であり、劣化により書き込んだ情報はいつか失われる。また回路構造上、NOR型よりもNAND型の方が劣化が進みやすい。また、データを常に記録するような用途で使用すると、特性上急激な劣化(不良ブロック)が発生し、製品寿命が著しく短くなることが予測されるという[5]
書き換え回数の制限

浮遊ゲートへ電子の注入と引き抜きを何度も繰り返すと、トンネル酸化膜 (Tunnel Oxide) と呼ばれる絶縁層である酸化膜を電子が通過するために、格子欠陥と呼ばれる、電子が通過しやすい箇所が増大していき、この層が劣化してゆく[注釈 2]。やがて格子欠陥が層を貫通し電子が通過してしまい、正常に情報の記録が行えないセルが生じ、このセルを含むブロックは不良ブロックとなる。この時の誤りは後述の誤り訂正の仕組みでかなりの程度までは訂正される。この一度生じた不良ブロックは回復することなく、この不良ブロックを使用しないように管理をする必要がある。

一般的なデータ書き込みおよび消去後、不良ブロックの検知処理を行い、不良ブロックを管理するロジックが組み込まれている。不良ブロックと検知されたブロックは冗長バイト内に不良ブロックを示すフラグ情報が書き込まれる。

書き換え頻度の上限回数は各社の企業秘密であり、公表はされていないが、SLCで10万回程度[2]、MLCで1万回程度の消去・書き込みが上限ではないかと言われている[要出典]。

メモリセルに対する読み書きによってゲート酸化膜の劣化が進行すると、電荷の蓄積量が当初の設計値とずれてしまい、"0"と"1"の差異が判別できなくなることで寿命となるが、読み書きが全く行われないブロックでも近隣セルの動作に伴って電圧が加わるため、「読み出しディスターブ」 (Read Disturb) と呼ばれる劣化が進行する[6]
データのエラー訂正

NAND型の欠点として、書き込み時のエラービットの発生が比較的多いことが挙げられる。これは、書き込み時に過剰な電子が浮遊ゲート内に注入されてしまうことにより、読み出し時にセルからの出力電圧異常が発生することや、書き換え回数の上限に起因する。このためNAND型では、ページ内の誤り訂正コードを演算し、冗長記憶エリアにこの誤り訂正コードを書き込む。

また、読み出し時に要求の記憶番地に該当するユーザデータと誤り訂正コードを演算し誤りがないか確認し、誤りがあれば訂正処理を行い、必要ならば不良ブロック処理を行う。
ウェアレベリング詳細は「ウェアレベリング」を参照


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:22 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef