Multi-core_processor
[Wikipedia|▼Menu]
効果的に説明するために、まず使用する用語を示す。
ダイ (die)
シリコンウェハー上に半導体回路を作り、四角に切り出したもの。ベア・チップやペレットとも呼ばれる。ダイはプロセッサ・パッケージ(CPUパッケージ)と呼ばれる覆いで封止されている。プロセッサはパッケージ化によって、基板との接点、ヒートスプレッダ、コンデンサ、抵抗などが一体となっている。半導体産業ではプロセス済みのウェハーやダイの生産までが上流工程であり、テストとパッケージ封入が下流工程になる。大手半導体企業で自社生産としている場合でも下流工程はアウトソーシングしていることがある。シリコンウェハーは無塵環境で製造されるが、不純物等の影響で不良箇所の発生が避けられない。ダイ上のどこか一箇所にでも不良があれば製品にはならないため、プロセスルールの微細化による回路の縮小でダイサイズを縮小し、シリコンウェハーからの切り出しを細分化して数を増やせば、ウェハー生産数に対するダイ不良品の数を減らすことができ、利益率が上がる。

AMD 486 DX 2 66 MHzのパッケージ裏面のカバーを外した様子。中央の黒と緑の部分がダイ。

コア (core)
コアとは、プロセッサ・ダイ上に作成されるプロセッサ回路の中核部分で、「キャッシュメモリ」を除く半導体回路部分。ただし、他のコアとは共有しない、コアごとのキャッシュメモリはコアに含める事がある。多くの場合、プロセッサ・ダイはコア、キャッシュメモリ、ボンディング・パッド等の接続部から構成される。

VIA Isaiahのダイの構成。おおまかに、上半分がキャッシュで下半分にコアが配置されている様子がわかる。

Quad-Core AMD Opteronのダイ。Quad-Coreでホモジニアスマルチコアなので、おなじパターンの回路が4つある。

サブストレート (substrate)
ダイを載せて外部接続ピンなどの外力から守るデジタル半導体の主要構成部材の1つ。MCM (Multi-Chip Module) やMCP (Multi-Chip Package) の場合には1つのサブストレートに複数のダイが載る。
チップ (chip)
いくぶん不明瞭な意味で、半導体部品を意味する。ダイやペレットを指す場合もある。また、表面実装技術 (surface mount technology, SMT) の受動部品を指す場合もある。
背景

ポラックの法則では、プロセッサを構成するトランジスタ数をプロセス繊細化を行なわずに単純に2倍にした場合、ダイサイズは2倍となるが、処理能力は 2 {\displaystyle {\sqrt {2}}} 倍(約1.4倍)にとどまるとされている。一方で、消費電力はトランジスタ数に比例する。この法則によれば2倍のコストで1.4倍のリターンしか得られず、プロセッサあたりのトランジスタ数を増やすことは非効率となる。

スーパーコンピュータの領域ではより早くからスカラー演算能力の限界として認識されていたシングルCPUによる演算能力向上の限界は、1990年代末頃からはPCやサーバー用の分野でも現実のものとして認識されはじめた。2000年代の中頃にはシングルコアでの処理性能の向上手法よりマルチコアによる向上を図った製品が登場するようになった。

以下にマルチコアが登場した背景について示す。
複数CPUの実装

大型コンピュータやスーパーコンピュータでは、1つの半導体パッケージに複数の汎用プロセッサ・コアを封入することは早くから行なわれていた。

サーバ用途でのパーソナルコンピュータ類似製品では1990年代中頃から、マザーボード上に複数のプロセッサを実装し並列処理させる対称型マルチプロセッシング (symmetric multi-processing, SMP) と呼ばれるソリューションが現れていた。こういったマザーボードにマルチコアCPUを装着して、2x2=4 や 2x4=8 といった多数のマルチコア環境が現れている。
発熱と消費電力の問題

1990年代中頃からラップトップパソコンでの「腿(もも)が熱い」という発熱への不満やPCの放熱ファンの騒音が問題として認識され始めた。将来の汎用プロセッサは、製造プロセスの微細化によるリーク電流の増加や、処理能力向上を目的とした動作クロックの高速化によって、消費電力がますます増大していくことが予想された。当時の汎用プロセッサ処理速度の向上手法のままでは、汎用プロセッサのダイ温度が非現実的なまでに高温となり、冷却機構の物理的な限界から性能向上が頭打ちになることもまた予想された。2000年前後から一般ユーザー向けのPCでも水冷式の製品が販売されはじめた。
クロックの限界

2001年からは1GHzを越えるCPUクロックが一般的となり、2010年頃には5GHz前後まで伸びた。しかし、1GHzの1サイクルの時間内では、光速度でも30cmしか伝播できない物理法則の壁がある。そのため、今後さらにクロックが高速化されて5GHz以上や10GHzになれば従来のLCによる伝播遅延に加えて、電気信号そのものの伝播の遅さも無視できなくなってくる。
高速処理の専用回路の限界

@media screen{.mw-parser-output .fix-domain{border-bottom:dashed 1px}}現在[いつ?]の汎用プロセッサ内部の処理機構がスーパースカラー機構などにより既に高度に高速処理への最適化がなされている。たとえば命令の先読みによって投機実行と呼ばれる、本当に実行が必要かまだ決まらない内から前もって次の処理を実行してしまうという動作を常に行う、汎用プロセッサの外部に主メモリがあるにもかかわらず汎用プロセッサ上にキャッシュメモリが3段階にも用意されている、さらにプリフェッチ・キューまでが用意されているといった具合である。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:41 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef