MOSFET
[Wikipedia|▼Menu]

MOSFET(金属酸化膜半導体電界効果トランジスタ・: metal-oxide-semiconductor field-effect transistor)は、電界効果トランジスタ (FET) の一種で、LSIの中では最も一般的に使用されている構造である。材質としては、シリコンを使用するものが一般である。「モス・エフイーティー」や「モスフェット」と呼ばれたり、「MOS-FET」と記述されることもあり、IGFET[注釈 1]やMISFET[注釈 2]がMOSFETとほぼ同義で用いられることがある。ユリウス・エドガー・リリエンフェルトが考案した。

MOSFETと言う呼び名で参照される素子には、集積回路で使われるいわゆる微細MOSFETと、高電圧・高電流の用途で使われるパワーMOSFETとがあり、その素子構造も大きく異なるので参照の際には注意が必要である。基本的にはパワーMOSFETは個別半導体(ディスクリート半導体)であり、高い耐圧を実現するために縦方向の電荷の流れを用いているが、微細MOSFETでは基板表面に電荷の流れを作っている。[1]
MOSFETの構造と特徴n型MOS FET

MOSFETは、通常p型のシリコン基板上に作成される。n型MOS(NMOS) の場合、p型のシリコン基板上のゲート領域にシリコンの酸化膜とその上にゲート金属を形成し、ドレイン・ソース領域には高濃度の不純物イオン注入し、n型(n+型)の半導体にする。

p型MOS(pMOS)の場合は、p型のシリコン基板にイオン注入でn層の領域を作成し、n型の注入領域中のゲート領域にシリコンの酸化膜とその上にゲート金属を形成し、ドレイン・ソース領域には高濃度の不純物を再度イオン注入し、p型(p+型)の半導体にする。

過去においては、空乏層による疑似交流キャパシターのみを持つバイポーラトランジスタや他の構造FETと比べると、ゲートの下に絶縁層を持つ関係上キャパシターを構造的に抱えているために、原理的には動作速度が遅くなる点や、トランスコンダクタンス(gm)が低い点などがMOSFETの課題であった。しかしながら、ゲート電流がほとんど流れない事やプロセス工程が比較的単純であるため、一部の高周波用素子を除き、多くのデジタル集積回路やアナログ回路にMOSFETが使用されている。更に、ドレイン-ソース間抵抗を低くできるため、特に電力スイッチング用途ではバイポーラトランジスタを代替した。近年では、ゲート長を小さくし、ゲート絶縁体の厚さを薄くすることや、SOI技術の使用により、動作速度やgmの問題を概ね解消している。シリコン製で数GHzの動作が可能になるとシリコンMOSによる製品領域が拡大し、従来は高速動作用として一般的だったヒ化ガリウム製FETの存在を脅かしている。

シリコンによるMOSFET製の集積回路では、ゲートは金属ではなくポリシリコン(多結晶珪素)によって形成することが長い間一般的であったが、ゲートにはより抵抗値の低い金属を使用したり、リーク電流を減らすためにゲート絶縁体の厚さを厚くできる高誘電率のゲート絶縁膜を用いれば、高速動作が可能で低消費電力の高性能ICが作れるため、米インテル社は高誘電率 (High-κ) 絶縁膜とメタルゲートとを組み合わせた新たなプロセス技術を開発し、2007年秋の45nmのプロセスルールによる製品の製造に採用するようになった[2]。その後、高性能なデジタル半導体を製造する各社も同技術を開発し製造している。

これら、MOSと類似の構造についてはシリコン-酸化膜-シリコンであったり、金属-絶縁膜-シリコンであるが、同様の原理を使っているため、一般にはMOS半導体素子として扱われている。

図のように集積回路内部では4端子素子として扱う。一方でディスクリート部品の場合、MOSFETは、ボディ(サブストレート)とソースが内部で接続されているので、3端子デバイスとして扱われる[3]
MOSFETの動作

理論的にn型とp型の違いはドレイン-ソース間の電流に寄与するキャリアの違いだけなので、ここではn型についてのみ扱う。図2 線形領域時の状態図3 飽和領域時の状態図4 線形領域と飽和領域でのドレイン電流Ids

MOSFETではゲートと基材の間に構成されたキャパシターにより、ゲートに正電圧が印加された場合、p型のサブストレートと絶縁層の境界面に電子を引き寄せドレイン-ソース間に反転層(n型)を作り上げる事でソース-ドレイン間を高コンダクタンスにする。ドレイン-ソース間電圧(Vds)が比較的低く、ゲート-ソース間の電圧(Vgs)からしきい値電圧(Vth)を引いた値(Vgs-Vth)がそれを超えている領域を線形領域と呼ぶ(図2)。線形領域においてはゲート電圧に比例して反転層が厚みを増すため、コンダクタンスがゲート電圧に比例して上がる。

一方、ドレイン-ソース間電圧(Vds)がゲート-ソース間の電圧(Vgs)からしきい値電圧(Vth)を引いた値(Vgs-Vth)を上回るとドレイン領域近辺には反転層が形成されなくなる。この状態をピンチオフしたと言う。この状態(ピンチオフ)よりドレイン電圧が高い領域を飽和領域と呼び、MOSのコンダクタンスは反転層の長さによって一定に決まる(図3)。この状態では定電流源として扱われる。

ここで注意したいのは、MOSFETのしきい値電圧は、基本的にはゲート-ソース間の条件で決まるのであり、ピンチオフと言うのは単にドレイン側で反転層が形成される条件が満たされなくなったと言う事である。従って、ピンチオフしてドレイン側でチャネルが消失しても、電子の流れが止まるというものではない。ゲート-ソース間にしきい値電圧以上の電圧が印加されていればソース端では反転層が形成され、電子はソースから流入する。ピンチオフ点以降のドレイン側でチャネルが消失してもドレイン側に大きな電界は存在するので流入した電子はドレイン電極に向かって加速される。また、ピンチオフ以降でドレイン電圧がさらに高くなっても、それはドレイン側の空乏層が拡大するだけで、ソース側の電子の流入には(基本的には)関係しないので定電流源として動作すると考えてよい。[注釈 3]

ここで言う「飽和領域」とはピンチオフした後、ドレイン電圧を上げてもドレイン電流が増加しない状態、つまり電流値が飽和している状態であって、電子速度が飽和するいわゆる電子の速度飽和現象とは異なるものである。

微細加工が進みチャネル長が短くなると、ドレイン電圧を高くするにつれてピンチオフ条件が成立する場所がドレイン端からソース方向に移動することにより、実効的なチャネル長が短くなり、ドレイン電流が増加する効果が現れる。これをチャネル長変調効果と呼び、バイポーラ・トランジスタのアーリー効果[4]に相当する。チャネル長変調効果を低減するには、なるべくチャネル長を大きく設計することが必要となる。
寄生ダイオード

ボディ(サブストレート)とドレインの間、あるいはボディとソースの間に寄生ダイオード(ボディーダイオード)が存在する[5]。例えば、n型MOSFETの場合、ボディがp型半導体であり、ソースとドレインがn型半導体なので、pn接合を形成してしまう。これが寄生ダイオードとなる。MOSFETの記号の矢印は、この寄生ダイオードの順方向バイアスを示している。通常、この寄生ダイオードに電流を流してはいけないので、ドレイン-ソース間に流れる電流の方向は記号の矢印と逆方向にしないといけない。

寄生ダイオードには利点もある。パワーMOSFETの場合、寄生ダイオードの特性が良ければ、電力インバーター回路などで必要なフリーホイールダイオード(環流ダイオード)として用いることもできるからである[5]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:53 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef