MLH1
[Wikipedia|▼Menu]
DNAミスマッチ修復タンパク質による開始過程に続いて、DNAポリメラーゼδ(英語版)、PCNARPAHMGB1、RFC(英語版)、DNAリガーゼI、さらにはヒストンクロマチン修飾因子がミスマッチ修復に関与する[9][10]
がんにおける発現の欠乏[ソースを編集]

MLH1の欠乏がみられるがんがんの種類欠乏の頻度周囲の発がん素地での欠乏の頻度
胃がん32%[11][12]24%-28%
胃がん(腺窩上皮型)74%[13]71%
カシミール渓谷でみられる高発生率の胃がん73%[14]20%
食道がん73%[15]27%
頭頚部扁平上皮がん(HNSCC)31%-33%[16][17]20%-25%
非小細胞性肺がん(NSCLC)69%[18]72%
大腸がん10%[7]

エピジェネティックな抑制[ソースを編集]

DNA修復不全がみられる散発性がんのうち、DNA修復遺伝子に変異が存在するものはわずかである。DNA修復不全がみられる散発性がんの大部分では、DNA修復遺伝子の発現の低下やサイレンシングを引き起こすエピジェネティックな変化が存在している[19]。上の表に記したようなMLH1の欠乏の大部分は、MLH1遺伝子のプロモーター領域のメチル化によるものである。MLH1の発現を低下させる他のエピジェネティックな機構としては、miR-155(英語版)の過剰発現によるものである[20]。miR-155の標的はMLH1とMSH2であり、ヒトの大腸がんではmiR-155の発現とMLH1やMSH2の発現との間には逆相関がみられる[20]
発がん素地における欠乏[ソースを編集]

発がん素地(field defect)とは、エピジェネティックな変化または変異によってがんが発生しやすい状態となっている領域のことである。Rubinによって指摘されている通り、がん研究の大部分はin vivoでの明確な腫瘍またはin vitroで分離された腫瘍性病巣に対して行われている[21]。しかし、mutator phenotypeを有するヒト大腸がんでみられる体細胞変異の80%以上は、最終的なクローン増殖の開始以前に生じたものである証拠が存在する[22]。同様に、Vogelsteinらは腫瘍で同定された体細胞変異の半数以上は、前腫瘍段階(発がん素地)において、外観上は正常な細胞の増殖時に生じたものであることを指摘している[23]

上の表に記されているように、MLH1の欠乏は腫瘍の周囲の発がん素地(組織学的には正常な組織)でもみられる。MLH1のエピジェネティックな発現低下やサイレンシングが行われていても、幹細胞に選択的な利点が生じる可能性は低い。しかし、MLH1の発現の低下や欠如は変異発生率の増加を引き起こし、変異した遺伝子によって選択的利点がもたらされる可能性がある。変異した幹細胞のクローン増殖が引き起こされた際、MLH1遺伝子は選択的に中立またはわずかに有害なパッセンジャー(ヒッチハイカー)変異として保持される。エピジェネティックに抑制されたMLH1遺伝子を持つクローンが存在し続けることでさらなる変異が生み出され続け、その一部から腫瘍が形成される可能性がある。
他のDNA修復遺伝子との協調的な抑制[ソースを編集]

がんでは、複数のDNA修復遺伝子が同時に抑制されていることが多い[19]。一例として、40の星細胞腫(英語版)と非患者の正常な脳組織で27のDNA修復遺伝子のmRNAの発現の比較では、評価された27のDNA修復遺伝子のうち13の遺伝子、MLH1、MLH3、MGMT、NTHL1(英語版)、OGG1SMUG1ERCC1、ERCC2(英語版)、ERCC3(英語版)、ERCC4RAD50XRCC4XRCC5はすべて、星細胞腫の3つのグレード(II、III、IV)のすべてで大きくダウンレギュレーションされていた[24]。これら13の遺伝子が低いグレードでも高いグレードでも同様に抑制されていることは、これらの抑制が星細胞腫の初期でも後期でも重要である可能性を示唆している。他の研究では、135の胃がん試料においてMLH1とMGMTの発現は密接に相関しており、MLH1とMGMTの喪失は腫瘍の進行時に同調的に加速しているようである[25]
減数分裂[ソースを編集]

DNAミスマッチ修復に加えて、MLH1タンパク質は減数分裂時の乗換えにも関与している[26]。MLH1はMLH3とヘテロ二量体を形成し、この複合体は卵母細胞の減数第二分裂中期の進行に必要であるようである[27]。メスとオスのMLH1(-/-)変異体マウスは不妊であり、不妊はキアズマ(英語版)のレベルの低下と関係している[26][28]。MLH1(-/-)変異体マウスの精子形成過程では染色体は通常より早く分離することが多く、減数第一分裂での停止が頻繁にみられる[26]。ヒトでは、MLH1遺伝子の一般的な変異は精子の損傷と男性不妊のリスクの上昇と関係している[29]減数分裂時の組換えに関する現行のモデル。二本鎖切断またはギャップの形成によって始まり、相同染色体の対合と鎖の侵入(strand invasion)が続くことで、組換え修復過程が開始される。ギャップの修復によって乗換え型(CO)または非乗換え型(NCO)の隣接領域が生じる。乗換え型の組換えはダブルホリデイジャンクションモデルによって生じると考えられ、右に示されている。非乗換え型の組換えはSDSA(Synthesis Dependent Strand Annealing)モデルによって生じると考えられ、左に示されている。組換えの大部分はSDSA型であるようである

MLH1タンパク質は、減数分裂中の染色体の乗換え部位に局在するようである[26]。減数分裂時の組換えはDNAの二本鎖切断によって開始されることが多い。組換え時には、切断部のDNAの5'末端はresectionと呼ばれる過程で除去される。その後のstrand invasionの過程では、オーバーハングした3'末端は相同染色体のDNAに「侵入」し、Dループが形成される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:52 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef