MEMS
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

マンションの省エネについては「スマートグリッド#MEMS」をご覧ください。
.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;align-items:center}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}半導体プロセスを用いて作成されたギア(左下)とダニ(右上)の電子顕微鏡写真。(サンディア国立研究所 SUMMiTTM Technologies の好意による ⇒www.mems.sandia.govLIGAプロセスで製造された光スイッチ

MEMS(メムス、Micro Electro Mechanical Systems)は、機械要素部品、センサアクチュエータ電子回路を一つのシリコン基板、ガラス基板、有機材料などの上に微細加工技術によって集積化したデバイスを指す。プロセス上の制約や材料の違いなどにより、機械構造と電子回路が別なチップになる場合があるが、このようなハイブリッドの場合もMEMSという。

その製作には、LIGAプロセスや半導体集積回路作製技術をはじめとして、立体形状や可動構造を形成するために犠牲層エッチングプロセスも用いられる。

以前は、MEMSはセンサなどの既存のデバイスの代替を主な目的として研究開発が進められていたが、近年はMEMSにしか許されない環境下での実験手段として注目されている。例えば、電子顕微鏡の中は高真空で微小な空間だが、MEMSならばその小ささと機械的性質を利用して電子顕微鏡下での実験を行うことができる。また、DNAや生体試料などのナノ・マイクロメートルの物質を操作・捕獲・分析するツールとしても活躍している。

現在、製品として市販されている物としては、インクジェットプリンタのヘッド、圧力センサ加速度センサジャイロスコーププロジェクタ・写真焼付機等に利用されるDMD光造形式3Dプリンターやレーザープロジェクタ等に使用されるガルバノメータなどがあり、徐々に応用範囲は拡大しつつある。

市場規模が拡大して応用分野も多岐にわたるため、期待は大きく、第二のDRAMと言われたこともある。
歴史

歴史的には古くから機械構造を半導体製作技術で作製する方法が行われてきた。1951年にはRCA社によりシャドーマスクが製作され、1963年には既に豊田中央研究所により半導体圧力センサが発表されている。1970年頃にはスタンフォード大学NASAの委託研究でガスクロマトグラフシリコンウエハ上に作成された[注釈 1][1][2]。MEMSの定義にもよるが、いくつかの文献では世界で最初のMEMSは1967年に発表されたH. C. Nathansonによる「The Resonant Gate Transistor」[3]となっている。ただし、圧力センサもMEMSに分類されるので豊田中研の半導体圧力センサもMEMSと考えられ、どれが世界初であるかについては議論が分かれる。

このような微細な機械構造が注目を集めるきっかけとなったのは1987年のTransducers'87で発表されたマイクロギアタービンである。その後、マイクロモータ、櫛歯型アクチュエータなどの発明により脚光を浴びる。初期の段階では動くだけで良かったが最近では応用を見据えたデバイスが主流である。

現在では後述のように多様な応用先があるため、MEMS応用の市場規模は日本国内だけでも数千億円にものぼり、将来的には数兆円規模になると言われている[4]

プロセスの見地では、最近まで半導体集積回路技術と近いサーフェイスマイクロマシニングが主流であったが、ICP-RIEによる深掘りエッチングやウエハ接合、LIGAプロセス技術などMEMS特有のプロセス技術の発展によりバルクマイクロマシニングが主流となってきている。
CMOS回路と組み合わせたデバイスはCMOS回路とのプロセス技術の整合性からサーフェイスマイクロマシニングを用いる場合が多いが、SOIウエハを用いてバルクマイクロマシニングとCMOS回路を組み合わせたデバイスも多くなってきている。
代表的なMEMSデバイス

市販されている代表的なデバイス

プリンタヘッド
: 特にインクジェットプリンタ

圧力センサ

加速度センサ

ジャイロスコープ

光スキャナ (ガルバノメータ)

AFMカンチレバー

流路モジュール

デジタルミラーデバイス(DMD)

HDDのヘッド

DNAチップ

光スイッチ

ボロメータ型赤外線撮像素子

波長可変レーザー (共振器を可変長化する)

光変調器

主な応用先

研究段階の物や期待される応用分野
高周波応用

主に微小な高周波スイッチや共振器を実現する。

機械的な高周波スイッチの場合、半導体の高周波スイッチより動作速度は遅いものの、低損失のスイッチが実現できる。

共振器は小型で高いQ値を持つものが作製可能である。水晶を用いても高いQ値を実現できるが、シリコンで作製できるため集積回路との集積化が容易である。

高周波スイッチ

フィルタ

発振器用振動子:水晶振動子と置き換えて使う

応用

光通信用光スイッチ

光スキャナ

投射型ディスプレイ

電子ペーパ

ヘッドマウントディスプレイ

流体応用

マイクロバルブ

マイクロ流路

Micro-TAS/Lab-on-a-chip

生化学応用

DNA分析チップ

蛋白質分析チップ

医療応用

血液検査チップ

能動カテーテル

ドラッグデリバリシステム

センサ

圧力センサ

触覚センサ

慣性センサ

加速度センサ

ジャイロセンサ



次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:30 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef