DNA複製
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "DNA複製" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2021年11月)
DNA複製の模式図.青色の二本の帯が鋳型鎖(Template Strands)。2本が平行に並んでいる上部は二重らせん、斜めになって非平行になっている下部は二重らせんが解けて一本鎖となった領域である。上部と下部の境目が複製フォーク (Replication Fork) であり、二重らせん領域は時間とともに解けられていくので複製フォークは図の上側へと進行していく。下部の2本の一本鎖はそれぞれ異なる様式でDNAポリメラーゼ(DNA Polymerase、緑色)により複製され、上から見て5'から3'の左の鋳型鎖ではDNAポリメラーゼが複製フォークと同じ方向に進行し、一本のリーディング鎖 (Leading Strand) が合成される。上から見て3'から5'の右の鋳型鎖ではDNAポリメラーゼが複製フォークと逆の方向に進み、途切れ途切れにいくつもの岡崎フラグメント (Okazaki Fragments) が合成されていく。伸長が終わった岡崎フラグメントはDNAリガーゼ(DNA Ligase、ピンク)によりつなぎ合わせられ、ラギング鎖 (Lagging Strand) となる。

DNA複製(ディーエヌエイふくせい、: DNA replication)は、細胞分裂における核分裂の前に、DNA複製されてその数が2倍となる過程である。生物学ではしばしば複製 (replication) と略される。セントラルドグマの一員とされる。複製される一本鎖DNAを親鎖 (parent strand)、DNA複製によって新しく合成された一本鎖DNAを娘鎖 (daughter strand) という。また、DNA複製により生じた染色体の個々を姉妹染色分体 (sister chromatid) という。
複製の機構の概説二重らせんの構造とDNA複製の様子.青い帯が親鎖で、緑の矢印が娘鎖。矢印の向く方向は伸長方向である。アルファベットは塩基でAがアデニン、Tがチミン、Cがシトシン、Gがグアニンである。AとTおよびCとGのペアが結合し、2本のDNA鎖は結合して二重らせんを形成する。図の上部は親鎖同士の二重らせんからなる未複製領域、下部は、DNA複製の過程で親鎖同士の二重らせんをほどかれた親鎖と、それを鋳型として合成された娘鎖との二重らせんである。左の娘鎖がラギング鎖、右がリーディング鎖である。

DNA複製は複製開始 initiation 、伸長 elongation 、終結 termination の3段階で進む[1]。なお、二重らせんをとる二本鎖DNAをdsDNA ( double-stranded DNA )、そうでない一本鎖DNAをssDNA (single-stranded DNA) と表記する。

複製は、DNA上の特別な塩基配列である複製起点(replication origin、起点:origin)から開始される。複製起点周辺で部分的に二重らせんが解かれ、親鎖の途中に2本のssDNAが現れる。直ちに、さまざまな酵素複合体がssDNAに結合し、プライマーと呼ばれる短いRNAがssDNA上に合成される。ここまでが複製開始段階である。次の伸長段階で、DNA合成酵素のDNAポリメラーゼ (DNA polymerase) を含む複合体(複製装置、replication machinery)が親ssDNAに結合する。まずDNAポリメラーゼは、プライマーの3'末端と結合している親ssDNA上の塩基の隣の塩基を識別し、それと相補的なデオキシヌクレオチド[注釈 1]をプライマーの末端に付加させる。それ以降、DNAポリメラーゼは親ssDNA上を5'から3'の方向へ移動しながら親ssDNAと相補的な塩基を娘鎖末端に付加させていく。同時に、娘鎖は親鎖と二重らせんを形成する。これと並行して、二重らせんのままの未複製部分は順次解かれていく。これが繰り返され、最終的に完全に複製した娘鎖が出来上がる。
半保存的複製

半保存的複製 (semiconservative replication) とは、一般に、DNA複製により合成された2本の二重らせんDNAが1本の娘鎖と1本の親鎖から構成されていることである。DNA複製の機構が半保存的複製であることは1958年にマシュー・メセルソンとフランクリン・シュタールにより証明された(メセルソン-スタールの実験[2][3]
半不連続的複製

半不連続的複製 (semidiscontinuous replication) とは、2本の親鎖のうち一方を連続的に、もう一方を半不連続的に合成するDNA複製一般の様式のことである。連続的および不連続的に合成された娘鎖をそれぞれ、リーディング鎖 (leading strand) およびラギング鎖 (lagging strand) という。DNA複製が半不連続的であることは岡崎令治により証明された[4][5]

DNA複製が半不連続的であることは、DNAポリメラーゼがデオキシヌクレオチドの付加を、RNAとDNA両方において3'末端へしか行えないことに由来する。このことは、複製の方向を親鎖の5'から3'への方向に限定する。ほどかれた2本のssDNAは、複製前のdsDNAがssDNAにほどかれる分岐点 (複製フォーク:replication fork、伸長フォーク:growing fork) の拡大方向が複製方向と平行なものとそうでないものに分かれる。前者のssDNAおよび後者のssDNAで合成された娘鎖がそれぞれリーディング鎖およびラギング鎖である。リーディング鎖合成ではたった1つのプライマーが合成されて、複製フォークの拡大で露出した未複製の塩基を1つのDNAポリメラーゼが複製し続ける。対して、ラギング鎖合成では露出した未複製の塩基と反対の方向へとDNAポリメラーゼが進んでいくため、複製フォークが何bpか拡大するたびにプライマーが合成されなければならない。いくつものプライマーから短いDNA断片(岡崎フラグメント)の合成が繰り返され、岡崎フラグメントの連結・統合によりラギング鎖は完成する。
複製開始DNA複製の開始段階におけるイニシエーターの機能。レプリケーター上にはイニシエーターと特異的に結合するための配列とATが豊富で二重らせんがほどけやすいDNA領域とがある。1) まず、イニシエーターは特異的な配列と結合する。2) するとAT高含量の配列がほどけ、その領域が、DNAヘリカーゼなどの娘鎖合成に関わるタンパク質が結合するのに十分な部分的なssDNAとなる。3) さらに、イニシエーターは、複製開始やその次の伸長段階で必要となる他の因子と結合してそれらをレプリケーターのssDNA領域に集める。

複製開始には多くのタンパク質が関わり、いくつもの段階を経る。実際に娘鎖が合成される伸長段階を始めるためには、親鎖が二重らせんのないssDNAである必要がある。これは、複製に関わるタンパク質がその役割を果たすためにはssDNAとなった親鎖に結合する必要があるためである。また、親鎖と新たに合成された娘鎖が新しい塩基対を形成しなければならない。そのため、複製開始段階は二重らせんを解くことから始まり、イニシエーターによる巻き戻しが第1段階である。複製開始第2段階は娘鎖合成の足掛かりとなるプライマーの合成である。娘鎖を合成するDNAポリメラーゼは複製を開始するためには短いRNAであるプライマーが必要である。最後の段階は娘鎖伸長に関わるタンパク質が親鎖に集合することである。
レプリコン

1つの複製起点によって巻き戻しが及ぶ範囲をDNA複製の単位とし、これをレプリコン(replicon)と呼ぶ。この言葉は、フランソワ・ジャコブシドニー・ブレナー、Jacques Cuzin らが1963年に提唱した「レプリコン説」で定義された。レプリコン説は、もともと細菌の複製開始(レプリコンの点火)を制御する仕組みのモデルだったが、生物一般に成り立つことがわかっている。

レプリコンには、複製起点を含めたレプリケーターと呼ばれる塩基配列が存在する。レプリケーターは、比較的結合が弱い塩基対であるアデニンとチミンが多いATリッチ配列を含み[5][6][7]イニシエーターと呼ばれるタンパク質がレプリケーター内の複製起点に結合するとATリッチ配列の巻き戻しが起こる。一般に、イニシエーターには少なくとも、複製起点への結合によるレプリコンの点火と、複製開始に必要なほかの因子をレプリケーターに引き寄せることの2つの役割を持つことが知られている。また、イニシエーターには、結合部位近くのDNAを曲げたり、その二重らせんをほどいたりするという第3の働きをして、複製開始後の伸長段階でのヘリカーゼによる巻き戻しを促進しているものもある。例えば、大腸菌のイニシエーターであるDnaAはレプリケーター (oriC) に5つある9bpの反復配列にまず結合してATPによる制御を受けるが、リン酸化前の、ATPと結合している状態のDnaAはoriCに3つある13bpの反復配列にも結合する。その結果、その13bp配列からそれぞれ20bp以上の巻き戻しが起こる[8]

レプリコンは原核細胞の染色体に1つしかないが、真核細胞の場合は複数存在する。複製の開始位置の分散はDNA複製の早期終結に寄与していると考えられている[9]
プライマーの導入

複製開始から伸長段階へ移行する前にDNAプライマーゼ primase により親ssDNA上に短いRNA鎖(プライマー)が合成される。プライマーとssDNAが結合したものをプライマー?鋳型接合体 (primer:template junction) という。プライマーの3'末端(プライマー末端)には三リン酸があり、DNAポリメラーゼはこのリン酸基を分解することで生じるエネルギーを用いて、プライマー末端と塩基対形成している塩基の5'側の隣の塩基(プライマーと結合している領域の手前)と相補的なデオキシヌクレオチド三リン酸を生成してプライマー末端に結合させる。以降、DNAポリメラーゼは娘鎖の3'末端の三リン酸の分解エネルギーを利用して娘鎖の伸長を進める。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:138 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef