DNAメチル化
[Wikipedia|▼Menu]
左:シトシン、右:メチル化したシトシン(5-メチルシトシン中心の2つのシトシンがメチル化されたDNAのイラスト。DNAメチル化は発生や疾患におけるエピジェネティックな遺伝子制御で重要な役割を果たしている。

DNAメチル化(ディーエヌエイメチルか)とは、DNA中の塩基の炭素原子にメチル基修飾が付加される化学反応である。真核生物から原核生物、ウイルスに到るまで、生物に広く見られる。特に真核生物の場合、CpG アイランド部分などのゲノム領域でよく見られ、エピジェネティクスに深く関わり複雑な生物の体を正確に形づくるために必須の仕組みであると考えられている。がんの形成や進行にも関わっていると考えられている。
概要

DNAメチル化は、シトシンピリミジン環の5位炭素原子あるいはアデニンプリン環の6位窒素原子へのメチル基の付加反応である(シトシンとアデニンはDNAを構成する4種の塩基のうちの2種である)。この修飾は細胞分裂を経ても受け継がれる。通常DNAメチル化は、接合体形成の間に除去され、発生の間に続く細胞分裂を介して再建される。しかしながら、最近の研究では、接合子ではメチル基の完全な除去よりもメチル基のヒドロキシル化が起こっていることが示されている[1]。DNAメチル化は高等生物において正常な発生と細胞分化において極めて重要な役割を担っている。DNAメチル化は、細胞が「自分がどこにいるのか」を記憶できるように安定的に遺伝子発現パターンを変化させたり、遺伝子発現を減少させたりする。例えば、発生の間に膵臓ランゲルハンス島となるようにプログラムされた細胞は、ランゲルハンス島であるようにシグナルを受け続けなくても、生物の一生に渡って膵臓ランゲルハンス島であり続ける。さらに、DNAメチル化は時間と共に宿主のゲノムに取り込まれたウイルスやその他の有害な要素の遺伝子の発現を抑制する。DNAメチル化はまた、クロマチン構造の基礎を形作る。これによって、細胞は単一不変のDNA配列から多細胞生物に必要な無数の特徴を形成することができる。DNAメチル化はまた、ほとんど全ての種類のがんの発達において極めて重要な役割を果たしている[2]

DNAメチル化は、DNAへのメチル基の付加を伴う ? 例えば、シトシンのピリミジン環5位炭素原子 ? この場合は、遺伝子発現の減少という特異的効果がある。シトシンの5位のメチル化は、調べられた全ての脊椎動物で発見されている。成体の体細胞組織では、DNAメチル化は通常CpG(英語版)ジヌクレオチド部位(シトシン-ホスホジエステル結合-グアニン)で起こる。非CpGメチル化は、胚性幹細胞で広く行き渡っている[3][4][5]
ほ乳類「エピジェネティクス」を参照

DNAメチル化は正常な発生に必須であり、遺伝子刷り込みX染色体の不活性化、反復因子の抑制、発癌 (carcinogenesis) など多くの鍵段階と関係している。

ほ乳類で全てのCpG部位の60-90%はメチル化されている[6][7]。メチル化シトシン残基は自発的にアミノ基が取り去られチミン残基となる。ゆえに、CpGジヌクレオチドは次々にTpGジヌクレオチドへと変異する。これは、ヒトゲノムにおいてCpGジヌクレオチドの出現頻度が低いことから明らかである(CpGジヌクレオチドは予想される頻度のたった21%しか存在しない)[8]。一方、非メチル化シトシンの自発的な脱アミノ化ではウラシル残基が生じるが、この変異は細胞にすばやく認識、修復される。

非メチル化CpGはしばしば、多くの遺伝子の5' 調節領域(英語版)に存在するCpG アイランドと呼ばれるクラスターとして集められている。がんなど多くの疾患プロセスでは、遺伝子プロモーターであるCpG アイランドが異常な過剰メチル化を受け、結果として細胞分裂による娘細胞に受け継がれる遺伝子サイレンシングが起こる。DNAメチル化の変化は、がんの発達の重要な要素と認識されている。過剰メチル化がプロモーターと関連していて遺伝子(がん抑制遺伝子)サイレンシングを起こすのに対して、低メチル化は一般的に初期に起こる染色体の不安定性や刷り込みの喪失と関連している。しかし、低メチル化はエピジェネティック治療の標的にもなりうる[9]

DNAメチル化は、2つの方法で遺伝子転写に影響を与える。1つ目は、DNAのメチル化それ自身が物理的に転写タンパク質の遺伝子への結合を妨げるもので、より重要と考えられる2つ目は、メチル化DNAがメチル化CpG結合ドメインタンパク質 (methyl-CpG-binding domain protein, MBD) と結合することである。次に、MBDタンパク質は、遺伝子座にヒストンを修飾するヒストン脱アセチル化酵素やその他のクロマチン再構築タンパク質などさらなるタンパク質をリクルートし、ぎっしり詰まって不活性化されたクロマチン(サイレントクロマチン)を形成させる。このDNAメチル化とクロマチン構造の繋りが非常に重要である。特に、methyl-CpG-binding protein 2 (MeCP2) の欠失はレット症候群と関連があり、methyl-CpG-binding domain protein 2 (MBD2)は、がんにおいて過剰メチル化遺伝子の転写サイレンシングを仲介している。

これまでの研究によって、ヒトの長期記憶の保持はDNAメチル化によって制御されていることが示唆されている[10][11]
がんにおけるDNAメチル化

DNAメチル化は遺伝子転写の重要な調節装置であり、異常なDNAメチル化が予定外の遺伝子サイレンシングと関連していること、プロモーター領域に高いレベルの5-メチルシトシンを含む遺伝子は転写が休止していることが、多くの証拠から明らかにされている。DNAメチル化は、の発達に必須であり、体細胞ではDNAメチル化の様式は一般的に高い忠実性を持って娘細胞に受け継がれる。異常DNAメチル化様式は、多くのヒト悪性腫瘍と関連しており正常組織と比較して過剰メチル化と低メチル化の2つの異なる形がある。過剰メチル化は、がん抑制遺伝子のプロモーター領域に作用し転写を抑制する主要なエピジェネティク修飾の1つである。過剰メチル化は通常プロモーター領域のCpGアイランドで起こり、遺伝子の不活性化と関連している。広範囲な低メチル化もまた、異なる機構でのがんの発達および悪性化と関連している[12]。遺伝子プロモーター領域のメチル化による遺伝子不活化の例として、ヒト乳癌、子宮癌におけるエストロジェン受容体欠如、非遺伝性乳癌におけるBRCA1の不活性化をあげることができる。[13]
ほ乳類が持つDNAメチル基転移酵素

ほ乳類の細胞では、DNAメチル化は主にCpGジヌクレオチドのC5位で、2つの一般的な酵素活性、維持メチル化 (maintenance methylation) と de novo(新生)メチル化によって行われる[14]

維持メチル化活性は、全ての細胞のDNA複製サイクルの後もDNAメチル化が保存されるために必要である。DNAメチルトランスフェラーゼ (DNMT) がないと、複製装置はメチル化されていない娘鎖を生み、そのうち受動的に脱メチル化を引き起こす。DNMT1は、DNA複製の間に娘鎖にDNAメチル化様式を複製するために必要な、維持メチルトランスフェラーゼと推定されている。DNMT1の2つのコピーを欠損したモデルマウスは、ほ乳類細胞の発達にDNMT1活性が必要なため、およそ9日目に胚致死である。

DNMT3aおよびDNMT3bは、発生初期にDNAメチル化様式を形作るDNAメチル化 de novo メチルトランスフェラーゼであると考えられている。DNMT3Lは、その他のDNMT3タンパク質と相同性があるが、触媒活性を持たない。その代わりに、DNMT3Lはde novo メチルトランスフェラーゼのDNAへの結合能を高め、活性を刺激することによって、これらの酵素を補助する。最後に、tRNA(シトシン-5-)-メチルトランスフェラーゼ(DNMT2 (TRDMT1))は、DNAメチルトランスフェラーゼ相同体として同定されたタンパク質であり、全てのDNAメチルトランスフェラーゼに共通の10個の配列モチーフを全て含んでいる。しかしながら、DNMT2 (TRDMT1) はDNAをメチル化せず、代わりにアスパラギン酸tRNAのアンチコドンループに存在するシトシン-38をメチル化する[15]

多くのがん抑制遺伝子はがん化(英語版)の間にサイレンシングしていることから、DNMTタンパク質を阻害することによりこれらのがん抑制遺伝子を再び発現させる試みがなされている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:51 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef