Colossus
[Wikipedia|▼Menu]
当初、Colossus は「歯車の設定」に使われたが、後に「歯車のパターン解読」にも使えることがわかった。

Colossus は、ブレッチリー・パークのローレンツ暗号機に対する機械的解読手法を研究した Newmanry(数学者マックス・ニューマンが指揮する部門)が運用した。

Colossus は Heath Robinson と呼ばれる特殊用途の光学機械式比較器を開発するプロジェクトからの派生として開発された。Heath Robinson で問題となったのは、電気機械式リレーの遅さと2つの紙テープの同期をとる方法である。一方の紙テープは暗号化されたメッセージをさん孔されており、もう一方はローレンツ暗号機のホイールによって生成されたパターンを示している。これを一秒間に2000文字程度読むようにしたところ、テープがずれて計算が不安定になってしまった。このため英国中央郵便本局研究所のトミー・フラワーズを呼びよせ、Heath Robinson の比較機構の設計を調べさせた。フラワーズはこの機械に感心せず、自らが主導して紙テープの一方のデータを内部で生成する電子装置を設計した。フラワーズはその設計を1943年2月にマックス・ニューマンに提示したが、1000から2000本の熱イオン管(真空管)を使って計算するというアイデアは信用されず、Heath Robinson の台数を増やすことになった。しかしフラワーズは自身のアイデアに固執し、研究所の上司から開発資金を獲得した。
Colossus の開発

トミー・フラワーズは英国中央郵便本局研究所で Colossus の設計・製作に11カ月(1943年2月から12月)を費やした。1943年12月の機能試験の後、分解してブレッチリー・パークに移送され、試験運用が開始されたのが1944年1月18日である。ブレッチリー・パークでの組み立ては Harry Fensom と Don Horwood が行った[2]。そして 1944年2月5日から Colossus は暗号解読士らに使用された[3]

Mark I に続いて 9台の Colossus Mark II が1944年6月以降、順次使用された。最初の Mark I は後に Mark II に改造されている。終戦時には11台めの Colossus が組み立てをほぼ完了した状態であった。Colossus Mark I は1500本の真空管を使用している。Colossus Mark II は2400本の真空管を使用しており、Mark I の5倍の性能で操作も改善されていた。Mark II の設計は Mark I の製作と並行して行われた。トミー・フラワーズは他のプロジェクトに異動となったため、Allen Coombs が Mark II のプロジェクト責任者となった。比較すると、他の初期のコンピュータ Manchester Mark I (1949) は 4200本、ENIAC (1946) は 17468本の真空管を使用している。

Colossus は電子的に歯車パターンを生成することで第二の紙テープを不要とし、一秒間に5000文字を処理することができた(紙テープの速度では毎秒12.2m)。回路の同期は紙テープのスプロケットホールによって生成されるクロック信号で行われた。従って計算速度はテープリーダーの機構によって制限されている。トミー・フラワーズは限界速度を試験し、最高で毎秒9700文字の処理速度を記録した。彼は、その試験を元に通常の運用にふさわしい速度として毎秒5000文字に設定した。場合によっては複数台の Colossus を使って今で言う並列計算のような使い方をすることもあり、約2倍の性能を発揮した。

Colossus には世界初のシフトレジスタとシストリックアレイ(英語版)が使われている。さん孔テープ上の5チャネルに対応して、最大100回の論理演算から構成されるテストを5つ並行して実施できる(ただし、通常 1回の走行では1本か2本のチャネルだけを調べた)。

当初 Colossus は与えられたメッセージの最初の歯車の位置をつきとめるために使われた(「歯車の設定」)が、Mark II はピンのパターンをつきとめる(「歯車のパターン解読」)のを助けるための機構が含まれていた。どちらの機種もスイッチ群とプラグ盤を使ってプログラム可能であり、これは Heath Robinson には無い機能である。
設計と操作1994年、トニー・セール(右)率いるチームがブレッチリー・パークでColossusの復元を開始した。写真は、2006年のもので、完成したマシンでの暗号解読をセールが監督しているところ。

Colossus は先端技術であった真空管サイラトロン(熱陰極格子制御放電管)、光電子増倍管(紙テープ読み取りに使用)を使っている。そしてプログラムされた論理関数を各文字に適用して、どれだけ " が返ってくるかをカウントする。真空管は故障しやすかったが、ほとんどの故障は電源のON/OFF時に起きるので、Colossus マシンは一度電源を入れたら故障で働かなくなるまで電源を入れっぱなしにして使われた[3]

Colossus はプログラム可能な電子デジタルマシンだが、そのプログラム機能は次のような点で限定されたものだった[4]

プログラムは内蔵式ではない。新たなタスクを設定するには、オペレータがプラグ盤とスイッチ群を操作して配線を変更する。

汎用性はなく、計数とブール演算という暗号解読に特化した設計である。

したがって、ある程度の柔軟性はあるが、自由にプログラム可能とは言えず、ある種の専用計算機である、ということになる。

「世界初のコンピュータはどれか」という議論(本質は「コンピュータ」の定義次第であるが)で本機とよく比較される機械について以下に述べる。コンラート・ツーゼZuse Z3 は世界初のプログラム制御式の完全機能するコンピュータであり、ベル研究所ジョージ・スティビッツらによって1930年代後半に開発されたマシンと同様、電気機械式リレーを使用していた。アタナソフ&ベリー・コンピュータは電子式で2進数を使用していたが、プログラム可能ではなかった。ヴァネヴァー・ブッシュらが1930年代以前から開発していたアナログコンピュータは半プログラム可能であった。チャールズ・バベッジ解析機関はこれら全てに先行していたし(19世紀中盤)、デジタル式でプログラム可能だったが、部分的にしか制作されず、当時は機能しなかった(ただし、階差機関のレプリカは1991年に製作され動作した)。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:37 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef