面積分
[Wikipedia|▼Menu]
によって記述できて、面素 dσ はパラメータ u, v の取り方に依らない。一つの面素の模式図。面素は限りなく小さく、極限をとって、それで曲面を近似する。
スカラー場の面積分

曲面 S とその上で定義されたスカラー場 f を考える。S が何らかの物質でできていて、S の各点 x において物質の密度が f(x) であるものと考えるならば、S 上の f の面積分は S の単位厚さあたりの質量を与える(もちろんこれは、曲面を無限に薄い立体と看做した場合にのみ正しい)。つまり、面積分を計算する一つの方法論は、曲面を非常に小さい無数の小片に分割し、その各小片の密度は近似的に定数であると仮定して、各小片についてその面積と密度とを掛けて単位厚さあたりの質量を求め、それらをすべて足し上げて得られる数として S の単位厚さあたりの総質量を求めればよいということになる。

面積分の明示式を得るには、(球面上の経線と緯線のように)S の上に曲線座標系を取るための媒介変数が必要である。そのような媒介変数表示を x(s, t) と書いて (s, t) が座標平面の適当な領域 T を動くものとすると、面積分は ∫ S f d S := ∬ T f ( x ( s , t ) ) 。 ∂ x ∂ s × ∂ x ∂ t 。 d s d t {\displaystyle \int _{S}f\,dS:=\iint _{T}f(\mathbf {x} (s,t))\left|{\partial \mathbf {x} \over \partial s}\times {\partial \mathbf {x} \over \partial t}\right|ds\,dt}

と定義される。ただし、右辺の縦棒で挟まれた式は x(s, t) の二種類の偏微分同士の交叉積ノルム(大きさ(英語版))である。

例えば、一般の函数 z = f(x, y) で与えられる曲面の表面積を求めるなら、r = (x, y, z) として A := ∫ S d S = ∬ T 。 ∂ r ∂ x × ∂ r ∂ y 。 d x d y {\displaystyle A:=\int _{S}\,dS=\iint _{T}\left|{\partial \mathbf {r} \over \partial x}\times {\partial \mathbf {r} \over \partial y}\right|dx\,dy}

を計算することになる。このとき、 ∂ r ∂ x = ( 1 , 0 , f x ( x , y ) ) , ∂ r ∂ y = ( 0 , 1 , f y ( x , y ) ) {\displaystyle {\partial \mathbf {r} \over \partial x}=(1,0,f_{x}(x,y)),\quad {\partial \mathbf {r} \over \partial y}=(0,1,f_{y}(x,y))}

であるから、代入して整理すれば A = ∬ T ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 + 1   d x d y {\displaystyle A=\iint _{T}{\sqrt {\left({\partial f \over \partial x}\right)^{\!\!2}+\left({\partial f \over \partial y}\right)^{\!\!2}+1}}\ dx\,dy}

を得る。これが一般の函数で与えられた曲面の曲面積に対するよく知られた公式である。式中で偏微分のクロス積として得られるベクトル ( − ∂ f ∂ x , − ∂ f ∂ y , 1 ) {\displaystyle \left(-{\frac {\partial f}{\partial x}},-{\frac {\partial f}{\partial y}},1\right)}

は、この曲面の法線ベクトルとして理解することができる。

上記の公式にはクロス積が現れているから、この公式は曲線が三次元空間に埋め込まれているときのみ有効であることに注意。
ベクトル場の面積分曲面上のベクトル場

S 上のベクトル場 v を考える。つまり、S の各点 x に対して v(x) がベクトルであるものとする。

ベクトル場の面積分は、成分ごとのスカラー場の面積分として定義することができる(結果はベクトルになる)。これは例えば、電荷を帯びた曲面から発生する電場のある固定された点における式や、物質面から発生する重力のある固定された点における値を表すのに利用される。

あるいは、ベクトル場の法成分を積分することもできる(結果はスカラーになる)。S を通過して流れる流体を考え、点 x における流体の速度 が v(x) で与えられるものとすると、単位時間当たりに S を通過する流体の量として流束が定まる。このように考えると、ベクトル場が各点で S に接するならば(流体は S に平行で S に入りも出もしないから)流束は 0 であることがわかる。またそのことから、v が S に沿って流れるだけでなく、接成分も法成分も持つものならば、流束に寄与するのは法成分のみであることもわかる。このような理由に基づけば、流束を求めるのに、各点でベクトル場 v と曲面 S の法ベクトルとの点乗積を取る必要があって、それはスカラー場を与えるから、そのスカラー場の面積分が既に述べた仕方で計算できる。

式でまとめれば、 ∫ S v ⋅ d S := ∫ S ( v ⋅ n ) d S = ∬ T v ( x ( s , t ) ) ⋅ ( ∂ x ∂ s × ∂ x ∂ t ) d s d t {\displaystyle \int _{S}{\mathbf {v} }\cdot d{\mathbf {S} }:=\int _{S}({\mathbf {v} }\cdot {\mathbf {n} })dS=\iint _{T}{\mathbf {v} }(\mathbf {x} (s,t))\cdot \left({\partial \mathbf {x} \over \partial s}\times {\partial \mathbf {x} \over \partial t}\right)ds\,dt}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:49 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef