電気
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

そこからさらに研究が進み、1833年にマイケル・ファラデー電気分解の法則を解明した[31]電気抵抗のある物質を電流が流れるとき、局所的な発熱がある。これを研究したのがジェームズ・プレスコット・ジュールで、1840年に数学的に定式化したジュールの法則を導き出した[31]。電流に関する最も重要な発見をしたのはハンス・クリスティアン・エルステッドで、1820年に導線に電流を流したときに近くにあった方位磁針が振れることに気づいた[32]。これが電気と磁気の基本的相互作用の発見であり、そこから電磁気学が発展することになった。

工学や実用的観点では、電流を直流交流に分類することが多い。これは電流が時間と共に変化するかしないかを示した用語である。直流は電池などが発する電流であり、常に一方向に流れる電流である[33]。交流は電流の流れる向きが定期的に逆転する場合を指す。交流の電流の強さの時間変化は正弦波を描くことが多い[34]。したがって、交流が流れる導体内では電荷が一方向に進むことはなく、短い距離を行ったり来たりすることになる。交流の電流の強さをある程度以上の時間で平均するとゼロになるが、エネルギーはある方向に運搬され、次に反対方向に運搬される。交流には定常的な直流では見られない特性があり、インダクタンス静電容量に影響を受ける[35]。そういった特性は電源を入れた直後など回路の過渡現象が主題となる場合に重要となる。
電場詳細は「電場」を参照「静電気学」も参照

の概念は、マイケル・ファラデーによって導入された。電場は電荷によってその周囲の空間に形成され、その電場内に存在する他の電荷に力を及ぼす。2つの電荷の電場の振る舞いは、ちょうど2つの質量の重力場のそれと似ており、広がりは無限だが互いに及ぼしあう力は距離の2乗に反比例する[23]。ただし、電場と重力場には大きな違いが1つある。重力は常に引き付け合う力だが、電場は引き付け合う場合と反発しあう場合がある。惑星のような巨大な物体は全体としてほとんど電荷を帯びていないため、遠距離の電場は通常ゼロである。そのため宇宙規模の距離では本来弱いはずの重力が支配的になる[24]平面導体上の正電荷が作る電気力線

電場は空間の位置によって変化し[注釈 1]、ある位置に正の単位電荷量を静止させて置いたとき、その電荷が受ける力の強さがその位置の電場と定義される[36]。この概念上の電荷を試験電荷と呼び、自身の電場が影響を及ぼさないようほとんどないくらいに小さく、しかも磁場を生じないために決して動かないものとする。電場は定義上からであり、力はベクトル量である。つまり、電場自身もベクトル量であり、大きさと方向がある。明らかに電場はベクトル場である[36]

静止した電荷が形成する電場を研究する分野が静電気学である。電場は空間の各点における方向に沿って描いた想像上の曲線で視覚化できる。この概念を導入したのはファラデーで[37]、これを「電気力線」と呼び、今も時折見かける。正の点電荷をその電場内で動かそうとした場合、点電荷が通る経路は電気力線に沿ったものになる。ただしこれは物質的存在とは無関係の想像上の概念であり、電気力線の間も含めて空間全体に電場は存在する[37]。静止した電荷から発する電気力線にはいくつかの特性がある。まず、電気力線は正の電荷を始点とし、負の電荷を終点とする。次に、良導体がある場合は常に直角に入っていく。さらに、電気力線同士が交差することはない[38]

中空の導体では電荷は常にその外側の表面に分布する。従って、その内部のどの位置でも電場はゼロとなる[39]。これがファラデーケージの動作原理であり、金属殻で囲まれた内部は外界の電場から隔離される。

静電気学の知識は高電圧装置の設計において重要である。電場を満たしている媒体には必ず耐えられる電場の強度(電界強度)の限界がある。電界強度がその限界を超えると絶縁破壊がおき、帯電した部分の間に電弧によるフラッシュオーバーが生じる。例えば空気の場合、電極の間が狭いなら電界強度が30kV毎センチメートルを越えると電弧が生じる。電極間の距離が大きい場合は限界がさらに低くなり、1kV毎センチメートルでも電弧を生じることがある[40]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:132 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef