集積回路
[Wikipedia|▼Menu]
ミニットマンミサイルアポロ計画は慣性航法用計算機として軽量のデジタルコンピュータを必要としていた。アポロ誘導コンピュータは集積回路技術を進化させるのに寄与し、ミニットマンミサイルは量産化技術の向上に寄与した。これらの計画が1960年から1963年まで生産されたICをほぼ全て買い取った。これにより製造技術が向上したために製品価格が40分の1になり、それ以外の需要が生まれてくることになった。

民生品として大量のICの需要を発生させたのは電卓だった。コンピュータ(メインフレーム)でのICの採用は、System/360では単体のトランジスタをモジュールに集積したハイブリッド集積回路(IBMはSLTと呼んだ)にとどまり、モノリシック集積回路の採用はSystem/370からであった。

1960年代に最初の製品があらわれた汎用ロジックICは、やがて多品種が大量に作られるようになり、コンピュータのようにそれらを大量に使用する製品や、あるいは家電など大量生産される機器にも使われるようになっていった。1970年代にはマイクロプロセッサが現れた。

集積度の高いMSIやLSIが普通に生産されるようになると、そのうちそのような分類も曖昧になって、マイクロプロセッサなど比較的複雑なものをLSI、汎用ロジックICなど比較的単純なものをIC、と大雑把に呼び分ける程度の分類となった。
VLSI

もとの分類ではLSIに全て入るわけだが、1980年代に開発され始めたより大規模な集積回路をVLSI (Very Large Scale Integration) とするようになった。これにより、これまでの多数のICで作られていたコンピュータに匹敵する規模のマイクロプロセッサが製作されるようになった。1986年、最初の1MbitRAMが登場した。これは100万トランジスタを集積したものである。1993年の最初のPentiumには約310万個のトランジスタが集積されている。また、設計のルール化はそれ以前と比較して設計を容易にした。

また、カーバー・ミードリン・コンウェイの『超LSIシステム入門』[7]によりVLSIにマッチした設計手法が提案された。これはMead & Conway revolution(en:Mead & Conway revolution)と呼ばれることもあるなどの影響をもたらした。たとえば、1950年代には、大学で最先端のコンピュータを実際に建造するなどといったこともさかんだったわけであるが、1970年頃以降にはコストの点で現実的ではなくなっていた。それが、CAD等の助けによりパターンを設計してチップ化する、という手法で、大学などでも最先端の実際の研究がまた可能になった、といった変化を齎したのが一例である。たとえば初期のRISCとして、IBM 801、バークレイRISC(SPARCへの影響が大きい)、スタンフォード系のMIPSがまず挙がるが、後者2つにはその影響がある。
ULSI

VLSIに続いて、新たに ULSI (Ultra-Large Scale Integration) という語も作られ、集積される素子数が100万以上とも1000万以上ともされているが、そのような集積度の集積回路も、今日普通はVLSIとしている。
WSI

WSI (Wafer-Scale Integration) は、複数のコンピュータ・システム等の全体をウェハー上に作り込み、個別のダイに切り離さずにウェハーの大きさのままで使用するという構想である[注釈 4]。現状では、1品もので、コストが非常に高額であっても良いというような特殊な用途・特殊な要求に基づき生産するような装置で採用されている。たとえば、人工衛星や天体観測望遠鏡の光学受像素子では、つなぎ合わせて作ると歪みや隙間が生ずるので、1枚のウェハーの全面を使用した物が作られている。
SoC

System-on-a-chip (SoC) は、従来別々のダイで構成されていたものを統合することで、独立して動作するシステム全体をひとつの集積回路上に実現するものである。例えば、マイクロプロセッサとメモリ、周辺機器インターフェースなどを1つのチップに集積するものである。
固体撮像素子

集積回路技術の進歩の一例であるが、以前は撮像管などと呼ばれる真空管だった、映像を撮影する撮像素子も、電荷結合素子 (CCD) の技術開発が進み、固体撮像素子としてCCDイメージセンサが作られ、家庭用ビデオカメラの大幅な小型化などにまず貢献した。続いてCMOSイメージセンサも作られた。やがて静止写真用にも十分な解像度を持つようになり、デジタルカメラが銀塩カメラを一掃した。
伸縮・折り畳み可能なシリコン集積回路

このシステムは、単結晶硅素無機の整列アレイを含む無機電子材料と、極薄のプラスチックやエラストマー基板を統合している。[8]
回路設計「集積回路設計」を参照
製造工程

半導体製造は、ウェハー上に回路を形成する前工程と、そこで作られたウェハーをダイに切断し、パッケージに搭載した後に最終検査を行う後工程に大きく二分される。なお、これらの工程は一般に複数の工程専門企業がそれぞれの工場で順次行っていくものである。1社ですべての工程を行うケースはほぼなく、あったとしても非常に稀である。

一般的には、設計・ウェハー製造・表面処理・回路形成・ダイシング・基材製造・ボンディングの各工程に専業企業が存在し、デザイン・ウェハー切り出し・アンダーフィリング・検査が前記から分かれて専業化している場合、加えて各工程で使用される材料・加工にも専業メーカーが存在する。一つの集積回路パッケージが出来上がるまでに関わるメーカーの数は少なくとも5、多いときには30社とも言われる。
ウェハー製造

集積回路の母材となるウェハーの原材料は、半導体の性質を持つ物質である。一般的な集積回路ではそのほとんどがシリコンであるが、高周波回路では超高速スイッチングが可能なヒ化ガリウム、低電圧で高速な回路を作りやすいゲルマニウムも利用される。

集積回路の歩留まりとコストは、ウェハーの原材料である単結晶インゴットの純度の高さと結晶欠陥の数、そして直径に大きく左右される。2007年末現在のウェハーの直径は300 mmに達する。インゴットのサイズを引き上げるには、従来の技術だけでは欠陥を低くすることが難しく、多くのメーカーが揃って壁に突き当たった時期があった。シリコン単結晶引き上げ装置のるつぼを超伝導磁石で囲みこみ、溶融したシリコンの対流を強力な磁場で止めることで欠陥の少ない単結晶が製造可能になった。
前工程前工程によって回路が出来上がったウェハー。

前工程は、設計者によって作られた回路のレイアウトに従ってウェハー上に集積回路を作り込む工程である。光学技術、精密加工技術、真空技術、統計工学、プラズマ工学、無人化技術、微細繊維工学、高分子化学、コンピュータ・プログラミング、環境工学など多岐にわたる技術によって構成される。
表面処理

集積回路は半導体表面に各種表面処理を複数実施して製造される。まずウェハーにはイオン注入によってドープ物質を打ち込み、不純物濃度を高める措置が行われる(最初に作られるこの層がゲートなどの集積回路の中枢となる)。さらにSOIではウェハーに絶縁層を焼きこむか張り合わせることで漏れ電流を押さえ込む処置が行われる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:102 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef