閉塞_(鉄道)
[Wikipedia|▼Menu]
このタイプの通票では、棒の一端に種別を表す丸や三角の形状をした鉄板等が付けられ、反対側や中央に通券函の鍵が付けられている。
スタフ名鉄築港線で使用されていたスタフ(現在のものとは異なる)

スタフは、最初は棒状の金具が用いられたが[要出典]、現在ではタブレットで代用されることが多い。現在旅客線上で棒状のスタフが扱われているのは、上述の通り名鉄築港線・津軽鉄道の2路線のみである[要出典]。
軌道回路詳細は「軌道回路」を参照

自動閉塞方式ならびに非自動閉塞方式連査閉塞式連動閉塞式では、線路に電流を流して車両が線路上にあることを検知する(線路上に車両があればそこが短絡されて電流が流れる)。これを、車両が線路と電気回路を構成することから「軌道回路」と呼ぶ。

軌道回路の設置 \ 自動・非自動自動閉塞方式非自動閉塞方式
駅間に連続した軌道回路を持つ自動閉塞式車内信号閉塞式連動閉塞式
停車場構内のみに軌道回路を持つ特殊自動閉塞式連査閉塞式

固定閉塞

閉塞区間が固定されている閉塞方式で時刻表方式、時刻表・列車順序方式、通票方式では、閉塞区間は駅に始まり駅に終わる。信号機によるシステムでは、閉塞区間は信号機間に設定される。

閉塞区間の長さは、必要とする列車の運行頻度に応じて設計される。交通量の少ない路線では、閉塞区間長は数キロメートルにもおよび、交通量の多い通勤路線などでは閉塞区間長は数百メートル程度になる。

列車は、信号機が進行を現示するまで閉塞区間に入ることを許されない。あるいは、通票式の場合は、通票を受け取るまでは進入できない。ほとんどの場合、直近の閉塞が開通しているだけではなく、その先、最低限のブレーキ距離までの範囲で閉塞が開通していなければ、その閉塞に進入することが許されない。信号機の間隔を近接して設置する自動信号式の場合は、信号機の現示が1つ先の信号機の現示を参照するようになっていて、効率的に列車間に挟む閉塞区間の数を制御できるようになっている。

閉塞区間の長さ(信号機の設置間隔)を計算するためには、下記のようなことを考慮に入れる必要がある。

路線の最高許容速度

勾配(ブレーキ距離の変化を補償するため)

その路線で運行している車両のブレーキ特性

視界(運転士からどの程度の距離まで信号機を見ることができるか)

運転士の反応時間(空走距離)

移動閉塞詳細は「移動閉塞」を参照固定閉塞(上図)と移動閉塞(下図)での列車同士の安全距離の違い
黒色の線が閉塞区間
赤色の線が列車が在線する閉塞区間
黄色の線は余裕分の区間
移動閉塞は固定閉塞とは違い線路に閉塞区間を設置しない

固定閉塞式を用いることの欠点として、高速な列車はブレーキ距離が長くなるため、より長い閉塞区間を占有して、線路容量を下げることがある。

システムとしては、コンピュータが各列車に対して他の列車の進入を許さない範囲を計算することで、各列車の現在の正確な位置、速度、進行方向を把握できることを前提に設計されており、線路や車上に備えられた様々なセンサー、タコメータ、速度計などによって検知または計測されている(GPSは地下線やトンネルの中では測定不能になるので使えない)。移動閉塞では、閉塞信号機とそれに伴い設置される閉塞区間が不要となり、速度指示が列車に直接伝達される[注 1]。これにより、安全上必要とされる最低限の間隔を保ちながら、できる限り列車を接近させて走行させることができるようになり、線路容量の増大に貢献する。

信号システムの観点から、上の固定閉塞の図は、先行列車が在線している区間すべてを占有していることを示している。これは、区間内のどこに列車が存在しているかを正確に知ることができなかったからである。このため、固定閉塞方式では、続行列車は先行列車が在線していない閉塞区間の境界までしか進むことができない。

2番目の図に示すように移動閉塞では、列車の位置とその減速曲線を列車が常時計算しており、地上装置に対して無線で報告している。このため地上装置は防護区間を計算し、もっとも列車に近い障害(この図でいえば先行列車の末尾)に停止限界点 (LMA: Limit of Movement Authority) を設定することができる。

列車の在線位置には不確定性があり、列車の長さに対して安全上の余裕を含める必要がある(図の中で黄色で示されている)。これを総称してフットプリント(足跡)と呼んでいる。この安全上の余裕は、列車が移動距離を計算する方法の精度に依存している。

移動閉塞に基づくCBTCを使えば、続行する列車の安全距離を短縮することができる。この距離は列車が常時報告する位置・速度に従って、安全上の要求を満たしながら変化する。これにより列車の運転間隔を短縮でき、線路容量を増加させることができる。

移動閉塞は、ロンドンドックランズ・ライト・レイルウェイ(Docklands Light Railway)や、ニューヨークのカナーシーL線(Canarsie "L" Line)などで用いられており、ジュビリー線でも使用する計画がある。イギリスのウェスト・コースト本線(West Coast Main Line)の近代化でも移動閉塞を採用して、最高速度を140マイル毎時まで引き上げることが計画されたが、十分成熟した技術ではないと考えられたことと、他の線との接続点が多いことなどから、計画は断念された。移動閉塞はERTMSETCS level 3でも仕様に入っており、この仕様では列車はブレーキ距離だけの間隔で先行列車に続行して走ることができるようになっている。

日本ではJR東日本で無線式の移動閉塞制御を実用化させ、無線による列車制御システム「ATACS」を2011年春から仙石線あおば通駅-東塩釜駅間に導入した。
常用閉塞方式

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "閉塞" 鉄道 ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2023年6月)

常用閉塞方式とは、平常時使用する閉塞方式のことであり、代用閉塞方式に対する語である。
非自動閉塞方式

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "閉塞" 鉄道 ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2023年6月)

非自動閉塞方式とは、人手を介する閉塞方式である。

列車数があまり多くない時期にはよく用いられていたが、1980年代以降、列車本数の比較的多い路線は自動閉塞式への変更が進められ、また非自動閉塞方式のまま残っていた路線は廃止されたり、1990年代まで残った路線のほとんどは特殊自動閉塞式に移行されたため、運行本数が少ない路線で使用されるのみとなっている。
スタフ閉塞式

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "閉塞" 鉄道 ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2023年6月)
札沼線石狩月形駅におけるスタフの交換(2020年に当駅は廃止)。銚子電気鉄道、笠上黒生駅下りホームにあるスタフの表示板。笠上黒生駅 - 外川駅間のスタフの形が三角形であることを示す。

スタフ閉塞式とは、1つの閉塞区間(通常は駅間)で1つのみの通票(スタフ)を使用し、その通票を持っていない列車は出発しないと定めることにより閉塞を実現する方式である。国鉄時代には通票式と呼ばれていた。

スタフ閉塞式は、使用する設備がスタフだけであり、簡単に運用ができる。しかし、列車を発車させると、スタフが戻ってくるまで次の列車を発車させることができず、ダイヤの編成に制限ができるという問題がある。このため、主に交換駅のない単線行き止まりの路線に用いられている。かつては代用閉塞の一種とされていたため、ローカル線では特認で常用されていた。1965年に正式に常用閉塞の一つとされた。スタフ扱いを行う駅は基本的に閉塞区間の起点の1駅のみである。2024年4月現在、JRの旅客線で運用されているのは、JR東海の名松線家城駅 - 伊勢奥津駅)とJR西日本の越美北線越前大野駅 - 九頭竜湖駅)のみである。地方鉄道では、大井川鐵道大井川本線(金谷駅 - 新金谷駅)、銚子電気鉄道線笠上黒生駅 - 外川駅)、小湊鉄道線里見駅 - 上総中野駅)、由利高原鉄道鳥海山ろく線(羽後本荘駅 - 前郷駅)、長良川鉄道越美南線美濃白鳥駅 - 北濃駅)、くま川鉄道湯前線あさぎり駅 - 湯前駅)で使用されており、由利高原鉄道とくま川鉄道では、交換駅を境に閉塞方式が違うため、上下列車の交換の際には、終点駅から来た上り列車と起点駅から来た下り列車との間でタブレットとスタフの交換を行なっている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:84 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef