鉄道の電化
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

20世紀初頭になるとそれまで路面電車に使用されていた500-600Vよりはるかに高圧の交流電流が商用に供給されるようになったが、こうした交流送電における一般の電力の50?60Hzは(当時の)機関車の電動機に使いにくかったので、路面電車などで行われた「電流を変換し直流で使用する」か、3000V15Hzという「比較的電動機に使いやすい低周波数の三相交流を使う」案が生まれたものの、三相交流による交差点の架線複雑化や三相交流電動機が使いにくい[注釈 7]が懸念され、ここから交流送電は後にイタリアで見られる「それでも三相交流低周波数を使う[注釈 8]」かスイスで新しく見られた「はるかに高電圧(1万5千V)の単相交流を使う」という2案に分かれ、高電圧単相交流はその後ドイツやオーストリアにも普及した[8]。しかしこの単相交流は駆動用に適した交流整流子電動機には商用周波数では整流が困難であったため低周波数の交流を使う(低周波交流饋電方式)必要性があり、このためほかと融通の利かない鉄道独自の電源が必要になるという問題があった[13]

1910年(明治43年)頃までには(欧州)各国で汽車の電化計画が盛んになったが、煙害根絶目的のために電化したごく一部の地域(サンゴッタルドトンネル等)を除き「石炭の輸入若しくは移入を抑えるため水力等[注釈 9]でも得られる電力で鉄道を走らせる」という経済的な目的で始めたので、まず周到に採算性の計算を行ったところ、この時は大半の国で否定的な結論が出ており、後に電化大国になるスイス等でも1912年の調査報告で「いずれの線路でももっと運輸量が増加して施設の利用率が良くなるまでは、電化が利益になる路線はない」と結論を下している[注釈 10]。他ヨーロッパ諸国で電化されたのは元々石炭がルール地方から移入して高価だったバイエルン山間部(山の水力発電所近くなので電力は安い)やプロイセンデッソーからビッターフェルトの試験的な電化区間、スウェーデンの北部線(元々鉄鉱石輸送が盛んで、水力も利用でき、北極圏のため蒸気機関車が不利だった)等ごく僅かであった[17]

こうした「長距離鉄道の電化は経済的でない」とされた理由には、朝倉希一によると以下のような理由が挙げられている[18]

電力は備蓄できないので、多忙期と閑散期で輸送量が激しく変動する鉄道では電力消費量が大きく変わり、電力荷重として好ましくない。
さらに通常の電力として使われる三相交流は架線が2本必要なので複雑化するので、単相交流を使いたい[注釈 11]がこれでは特別の発電所が必要でほかと融通がない。

電気機関車の構造について信用が十分ではない(朝倉自身、日本の例でイギリスから輸入した電気機関車の不具合が電化の遅れにつながったとしている[注釈 12])。

都市近郊なら列車加速度や列車単位増大による輸送量増加を見込めるが、長距離鉄道ではそこまで増発が見込めない。

一方、アメリカでは私鉄各自の判断で大規模な電化に踏み切った物もあり、長距離鉄道の送電に単相交流方式のほかに直流高圧(3000V程度)の送電方式も選ばれ、1913年にこの直流3000V電化方式に成功したシカゴ・ミルウォーキー鉄道は1917年からシカゴからロッキー山脈シエラネバダ山脈を越える710q近くにも及ぶ電化区間(当時世界最長)を設置し、1920年には太平洋岸の350qの電化も済ませ、こうした電化で煙からの解放のほかに運転時間20%短縮や回生ブレーキによる山越えのエネルギー回収(20 - 25%ほど)というメリットもあったものの、運転費そのものは蒸気機関車時代の方が安く済んでいたと判明した(鉄道会社の方では多少電力費が高コストになっても電化による乗客数増加等を期待していた[注釈 13])。その後、アメリカ合衆国ではミルウォーキー鉄道のような長距離電化はあまり考えられず、電化区間ごとに機関車をつけ変えていては大変なので、直通できる電気式ディーゼル機関車牽引で通しで走るようになった[19]
一方、アメリカ以外の各国で鉄道電化が盛んになったのはスイスやイタリア等を除くと[注釈 14]1945年以後で、オランダのような殆ど鉄道が壊滅した国では戦争で破壊されたシステム復旧が必要で、他の国でも自国産の動力源を使いたいと考えていたことで電化が大きなうねりとなった[20]

ヨーロッパでは元々電化が進んでいたイタリアでは戦前から前述の3000V直流饋電を採用して三相交流から徐々に切り替えていたが、戦後、残存三相交流路線を直流3000Vに交換して電化の統一を行うことに決定し、これによってまず戦火にやられた路線が補修時に直流に変更され、次いでモダーヌ?トリノ?ジェノヴァ線、ジェノヴァ - ヴェンティミーリア線、ジェノヴァ?ヴォゲーラ線、ボルツァーノ?ブレンネロ線などが1960年代までに変更された。最後まで三相交流方式が残ったのはピエモンテ州南部の地方路線で1970年代半ばだった。

ドイツは戦争の痛手が大きく[注釈 15]、東西分裂等の悪影響もあったが、それでも戦前通り単相交流15000V 16・2/3Hzによる電化を広げていった。

イギリスは自国内に大きな炭鉱があることもあって電化の経済的メリットが薄く、大都市周辺と南部に電化区間が集中し、全体では暫く蒸気機関車時代が続いた後、1955年にディーゼル機関車による動力近代化計画を発表した。

フランスパリ?リヨン線を1946年に直流1500V電化を行って同国南部の路線にも拡大したが、25000V50Hz電化も検討し始め、1951年のエクスレバン?ラロシュ・シュル・フォロン間48マイル(78q)を試験的に電化し、水銀整流器と直流電動機の組み合わせた機関車が成功し、南部(その後もかなり直流1500V)より電化が遅れたフランス北部はこの方式で電化された[21]。世界的に交流電化が広がるきっかけになったのは、この単相商用交流饋電の成功からで、その後全域とまでは行かなくとも新規幹線にこれを採用した国がコンゴ(1952)、ポルトガル(1955)、インド(1958)、イギリス(1959)、ソ連ハンガリー中国と次々に現れた(日本も1954年に試験・1957年に営業運転開始を行っている)[22]
日本国外の例ヨーロッパの電化方式の大まかな範囲はこのようになる .mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.5em;height:1.5em;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}  直流750V   直流1500V   直流3000V   交流15000V   交流25000V   非電化

国によって電化時期や経緯が異なるので電圧や(交流の場合)周波数もバラバラであり、ヨーロッパを例に取ると第二次世界大戦前はフランス・オランダ・イギリス[注釈 16]は直流1500V、ドイツとスカンディナビア諸国は単相交流1万5千V16.67(16と2/3)Hz、イタリア(三相交流切替後)・ロシア・スペインは直流3000Vを使用し、いずれも専用発電所から送電していることが多かったが、1970年代になると1920年代から研究されていた50Hz単相交流という一般商用周波数を用いた饋電が広がり、イギリス・フランス・トルコ・日本等で新たな電化路線に使用されたが古い方式を残す路線も多かったので場所によっては電気車は3種類又は4種類の電力を使える必要が生じたものもあった[23]

電化区間自体も国策や資源(電力)事情、産業動向等により、各国での電化率には偏りが見られる。スイスオランダといった国々が90%を越えるほか、ドイツフランスロシア等のヨーロッパ諸国や、中国韓国台湾日本等の東アジア諸国は50%を越える。北米大陸やオセアニア東南アジア等は電化率が低い。スイスなどでは比較的電化費用が安価で石炭産出が少なかったことから比較的早いうちに鉄道路線はほぼ全線が電化されている。アメリカやオーストラリアなどの大陸横断鉄道は電化されていない区間が殆どであるが、ロシアを横断するシベリア鉄道は電化されている。

なお、都市鉄道や地下鉄では電化のデメリットである「高コスト」が輸送量増大が見込めることで打ち消せられるため、全線が電化されているのが原則である。
電化・非電化区間が混在する路線

後述の通り、日本国内で電化・非電化区間が混在する路線は運行系統が途切れて別々の路線として扱われることが多い。例外的に大井川鉄道井川線のように輸送量増大目的ではなく何らかの理由で電気運転をやむを得ず使用する路線では非電化側の列車が直通する場合もある。

諸外国では、様々な方法を使って非電化混在路線での直通運転に対応している。例えばアメリカでペンシルバニア鉄道ワシントンニューヨーク電化以前は、ニューヨーク手前まで来た蒸気機関車の列車がニューヨーク入口のボルティモア・ベルトラインのトンネル(ここのみ電化)だけ蒸気機関車ごと電気機関車が牽引していた事例があった[24][9]。機関車を交替することで非電化混在路線に対応するケースもある[25]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:147 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef