鉄道の電化
[Wikipedia|▼Menu]
同年[注釈 3]、アメリカのボルチモア・アンド・オハイオ鉄道で電気機関車[注釈 4]が3両作成され、ハワードストリートの1マイル以上ある急勾配トンネルに使用された[8]、なおこれが幹線の蒸気鉄道初の電化に成るが、電化区間はこのトンネルの部分のみでここを蒸気機関車ごと牽引した[9]

1897年:イタリアで蓄厚器・650V第三軌条・3000V15Hz三相交流という送電システムを比較し、3000V15Hz三相交流が安全性等から一番優れているとされた。後に1906年にシンプロントンネル(ブリーク?イゼル区間)でこの方式を採用[8]

1899年:スイスのブルグドルフ?トゥーン鉄道の山岳線で世界初の交流電化(三相750V)の営業が開始[10]

1905年:スイスのエーリコン社で単相交流が開発[11]

1911年:日本で碓氷峠が電化された。

1913年:スイスでベルン-レッチュベルク-シンプロン鉄道(BLS)が単相交流で1万5千ボルトの高圧による電化に成功[12](なお、周波数は16と2/3Hzと、一般的な商用周波数50Hzの1/3だった[13]。)。

1915年:アメリカのシカゴ・ミルウォーキー鉄道において直流3000V電化が開始され、1927年までこの方式で区間を広げ当時世界一長大な電化区間となる[14]

1922年:イタリアが直流3000Vを標準方式に置換、三相交流方式の新規電化を停止(三相交流既存区間は続けて使用しており二次大戦後も残存)[14]

1923年:ハンガリーブダペスト西駅 - ブダケスィ・アラグ駅間で16kV50Hzの商用周波数による単相交流を使う「相変換式交流電気機関車[注釈 5]」の試験運行が開始[15]

1932年:1923年からの実験後ハンガリーのブダペスト- コマロン駅間で16kV50Hzによる「営業運転」が開始[15][13]

1935年:ドイツ南部ヘレンタール線の一部でそれぞれ交流整流子電動機と水銀整流器+直流電動機を使った電気機関車を比較し、交流2万V50Hzの研究を開始、商用単相交流饋電方式の基盤構築。第二次世界大戦後、フランスがこれらの機関車と設備を接収して国内の交流電化を進める。交流電化ではBT饋電方式からAT饋電方式が主流になる[13]

各国の事例

電化は当初どこでも大都市の交通としての路面電車や地下鉄に採用されており、電気方式は600V直流を送電して軌道上に架線を設ける(路面電車)か軌道の片側に第3レールを設ける(地下鉄)のが一般的だった。このように輸送機関に対する電気の応用は良い成績を示したので次に汽車の電化[注釈 6]が問題となるに至った[16]

20世紀初頭になるとそれまで路面電車に使用されていた500-600Vよりはるかに高圧の交流電流が商用に供給されるようになったが、こうした交流送電における一般の電力の50?60Hzは(当時の)機関車の電動機に使いにくかったので、路面電車などで行われた「電流を変換し直流で使用する」か、3000V15Hzという「比較的電動機に使いやすい低周波数の三相交流を使う」案が生まれたものの、三相交流による交差点の架線複雑化や三相交流電動機が使いにくい[注釈 7]が懸念され、ここから交流送電は後にイタリアで見られる「それでも三相交流低周波数を使う[注釈 8]」かスイスで新しく見られた「はるかに高電圧(1万5千V)の単相交流を使う」という2案に分かれ、高電圧単相交流はその後ドイツやオーストリアにも普及した[8]。しかしこの単相交流は駆動用に適した交流整流子電動機には商用周波数では整流が困難であったため低周波数の交流を使う(低周波交流饋電方式)必要性があり、このためほかと融通の利かない鉄道独自の電源が必要になるという問題があった[13]

1910年(明治43年)頃までには(欧州)各国で汽車の電化計画が盛んになったが、煙害根絶目的のために電化したごく一部の地域(サンゴッタルドトンネル等)を除き「石炭の輸入若しくは移入を抑えるため水力等[注釈 9]でも得られる電力で鉄道を走らせる」という経済的な目的で始めたので、まず周到に採算性の計算を行ったところ、この時は大半の国で否定的な結論が出ており、後に電化大国になるスイス等でも1912年の調査報告で「いずれの線路でももっと運輸量が増加して施設の利用率が良くなるまでは、電化が利益になる路線はない」と結論を下している[注釈 10]。他ヨーロッパ諸国で電化されたのは元々石炭がルール地方から移入して高価だったバイエルン山間部(山の水力発電所近くなので電力は安い)やプロイセンデッソーからビッターフェルトの試験的な電化区間、スウェーデンの北部線(元々鉄鉱石輸送が盛んで、水力も利用でき、北極圏のため蒸気機関車が不利だった)等ごく僅かであった[17]

こうした「長距離鉄道の電化は経済的でない」とされた理由には、朝倉希一によると以下のような理由が挙げられている[18]

電力は備蓄できないので、多忙期と閑散期で輸送量が激しく変動する鉄道では電力消費量が大きく変わり、電力荷重として好ましくない。
さらに通常の電力として使われる三相交流は架線が2本必要なので複雑化するので、単相交流を使いたい[注釈 11]がこれでは特別の発電所が必要でほかと融通がない。

電気機関車の構造について信用が十分ではない(朝倉自身、日本の例でイギリスから輸入した電気機関車の不具合が電化の遅れにつながったとしている[注釈 12])。

都市近郊なら列車加速度や列車単位増大による輸送量増加を見込めるが、長距離鉄道ではそこまで増発が見込めない。

一方、アメリカでは私鉄各自の判断で大規模な電化に踏み切った物もあり、長距離鉄道の送電に単相交流方式のほかに直流高圧(3000V程度)の送電方式も選ばれ、1913年にこの直流3000V電化方式に成功したシカゴ・ミルウォーキー鉄道は1917年からシカゴからロッキー山脈シエラネバダ山脈を越える710q近くにも及ぶ電化区間(当時世界最長)を設置し、1920年には太平洋岸の350qの電化も済ませ、こうした電化で煙からの解放のほかに運転時間20%短縮や回生ブレーキによる山越えのエネルギー回収(20 - 25%ほど)というメリットもあったものの、運転費そのものは蒸気機関車時代の方が安く済んでいたと判明した(鉄道会社の方では多少電力費が高コストになっても電化による乗客数増加等を期待していた[注釈 13])。その後、アメリカ合衆国ではミルウォーキー鉄道のような長距離電化はあまり考えられず、電化区間ごとに機関車をつけ変えていては大変なので、直通できる電気式ディーゼル機関車牽引で通しで走るようになった[19]
一方、アメリカ以外の各国で鉄道電化が盛んになったのはスイスやイタリア等を除くと[注釈 14]1945年以後で、オランダのような殆ど鉄道が壊滅した国では戦争で破壊されたシステム復旧が必要で、他の国でも自国産の動力源を使いたいと考えていたことで電化が大きなうねりとなった[20]

ヨーロッパでは元々電化が進んでいたイタリアでは戦前から前述の3000V直流饋電を採用して三相交流から徐々に切り替えていたが、戦後、残存三相交流路線を直流3000Vに交換して電化の統一を行うことに決定し、これによってまず戦火にやられた路線が補修時に直流に変更され、次いでモダーヌ?トリノ?ジェノヴァ線、ジェノヴァ - ヴェンティミーリア線、ジェノヴァ?ヴォゲーラ線、ボルツァーノ?ブレンネロ線などが1960年代までに変更された。最後まで三相交流方式が残ったのはピエモンテ州南部の地方路線で1970年代半ばだった。

ドイツは戦争の痛手が大きく[注釈 15]、東西分裂等の悪影響もあったが、それでも戦前通り単相交流15000V 16・2/3Hzによる電化を広げていった。

イギリスは自国内に大きな炭鉱があることもあって電化の経済的メリットが薄く、大都市周辺と南部に電化区間が集中し、全体では暫く蒸気機関車時代が続いた後、1955年にディーゼル機関車による動力近代化計画を発表した。

フランスパリ?リヨン線を1946年に直流1500V電化を行って同国南部の路線にも拡大したが、25000V50Hz電化も検討し始め、1951年のエクスレバン?ラロシュ・シュル・フォロン間48マイル(78q)を試験的に電化し、水銀整流器と直流電動機の組み合わせた機関車が成功し、南部(その後もかなり直流1500V)より電化が遅れたフランス北部はこの方式で電化された[21]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:147 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef