還元主義
[Wikipedia|▼Menu]
例えば、生物の分子構造を発見する努力は、高次レベルにおいてもしばしば有益だった、とした[16]

ケネス・ウォーターズは修正された理論的還元主義に対する立場を「レイヤーケーキ反還元主義」と呼んだ。この反還元主義視点は多層的である。上位レベルでは遺伝現象を説明しようと試み、下位レベルでは遺伝物質の発現や複製を説明する。しかし、反還元主義が示す議論は実際の科学と一致しない、とウォーターズは述べる。DNAと遺伝子は異なる概念なので分子遺伝学と古典遺伝学が結び付けられないという反還元主義の主張は正確ではない。レイヤーケーキの概念は同様に生物学の全分野に広げることができる。それぞれのレベルにはそれぞれのレベルをもっとも良く説明する理論がある[16]のである。

尚、多層性階層構造)の概念は還元主義者と反還元主義者の双方に共有されている事に注意するのは重要である。しかし全ての還元主義者が多層性を受け入れるというわけではないと言われ、反還元主義者の中には全体論を提唱することに関心がある人もいる[16]
成功例

還元主義は、無機的な物事を対象とする物理学化学においては有効であった。それらの分野での、17-20世紀における発展に大きく寄与した。

また、ウォーターズは例の一つとして生物学の遺伝的アプローチを取り上げる。遺伝的アプローチは以下のようなものだという。1.自然に生じるか人工的に生み出された、注目されている生物学的プロセスに関連した違いを示す変異体を同定する。
2.変異体の遺伝子を分析する。
3.注目のプロセスをより理解するために、変異体同士を配偶させる。

これによって特定の表現型に影響を与える遺伝子を分離することができる、とする。

もっとも、このような戦略は別段新しいというわけではない。生理学者は、例えば哺乳類の循環系など様々なメカニズムを解明するにあたって、その部品に干渉してみることによって何が起こるか観察していた[19]という。

このような研究プログラムは「機能的分析」とも呼ばれる。例えば線虫ニューロンを調査している研究者は、神経系の部分がどの様な能力に貢献しているかを知ることで神経系を説明しようとする。ニューロンの中でベータスペクトリンはどのような機能を持っているか? マーク・ハンマーランドとエリク・ヨーゲンセン、マイケル・バスティアーニはそれがニューロンのグロースコーンに含まれており、軸索樹状突起の成長にかかわっていることを明らかにした[19]

ゴドフリー=スミスは次のように述べた。

「我々が生物学のような領域で成功した還元主義研究プログラムを見るとき、様々な生物学的プロセスがどのように起こるのかについて知識が蓄積されているのを見ることができる。我々は光合成呼吸タンパク質の合成、信号の伝送筋肉の動作、免疫反応のプロセスの優れた理解を持っている。これらの研究は、もっともな事であるが、還元主義的だと言うことができ、そしてしばしばそう言われている。我々は高次レベルのプロセスや能力を取り上げて、下位レベルのメカニズムや実体がどのように働いているのかを説明することができる。多くの場合、下位レベルとは分子あるいはそれ以下のレベルのことである。下位レベルの説明はシステムの複雑さに圧倒されるが、しかしその複雑さは、それがどのように起きるかを説明する我々の能力を圧倒しない。[20]

各分野における還元主義とその限界
地球科学における還元主義

地球科学物理学に依存する、と言われることがある。例えばマントルは次のように還元的(物理還元的に)に説明することができるのだと。「惑星の核を包む、石のようだがわずかに流動的な層。マグネシウムシリコン酸素などミネラルを多く含むが、金属によってできている核とは対照的である[21]」しかし同時に地球科学は過去の出来事も扱う。惑星の構造はその星の形成の歴史に由来するため、構造の説明は一般法則の説明ではない。これは理論的な還元が不可能なことを意味する[21]

多くの地球科学現象は創発特性を備えている。問題はそれらの特性が還元不可能かどうかである。一部の科学者は人が認識できる範囲の法則に基づいたシンプルなモデルで創発パターンを再現しようとするが、他の科学者は洗練された数学物理学モデルで創発のパターンを再現しようとする。前者は地球科学的現象は還元できないと主張するが、後者は十分な計算能力と詳細な初期条件さえあれば、物理法則に基づいた数学モデルによって説明できると主張する[21]

DeVriendのような物理還元主義者は、認識可能なレベルの自己組織化は、認識できないレベルの微細なプロセスと連続体力学の法則によって起きると主張したが、しかし計算することは困難であるということが非常に大きな問題である。この議論は、物理還元主義はひとつの現実的な手法ではあるが、高次レベルの法則はそれはそれで自立的であり物理還元主義と互換性があるという事(物理還元主義の代わりに用いることができるという事)を示している[21]ともされる。
心の哲学における還元主義

心の哲学では、還元的自然主義とその反対者(非還元的物理主義、消去主義、二元論)は理論間の還元が科学の一般であると仮定する傾向がある。しかし心(例えば意識、意図、判断)の中心的な特性にはいかなる自然科学の言語にも置き換えられないような性質がある。この問題は説明のギャップあるいは意識のハードプロブレムと言われている。コリン・マッギンスティーブン・ピンカーのような新神秘主義者はこれを我々の認知能力の限界ではないかと主張したが、スティーブン・ホーストは自然科学における還元の限界が心の哲学の議論にも適用できるのではないかと主張している。デイヴィッド・チャーマーズは『意識する心』で、意識が物理的な用語で説明されることを望むのは自然だが、意識が還元的な説明の網から逃れると主張した[22]ジェリー・フォーダーは心理学と心の哲学を神経科学から切り離そうと試み、これら中位レベルの分野をスペシャル・サイエンスと呼んだ[23]スーパーヴィニエンスは緩やかな還元主義だと見なされている[20]
生物学における還元主義

生物学において、還元主義とは1.形而上学的命題であり2.説明に関する主張であり、3.研究プログラムである[15]。還元主義者が主張し、反還元主義者も受け入れる形而上学的命題は、全ての生物学的現象も含めるあらゆる現象は物理化学と結びついていると言うことである。非物理的な出来事、プロセスはなく、生物的な出来事やプロセスは全て物理的である。反還元主義は形而上学的主張には反対せず、特定の説明と手法や方法論に反対する[15]

研究プログラムとしての還元主義は革新をもたらす源であった[24]ピーター・メダワーは「今まで考案された中でもっとも有益な研究戦略」と呼んだ[25]。ミクロレベルの理解はマクロレベルを調査しても分からない新しい理解をもたらす。その代表が、解剖生理学による臓器の役割の解明、個体の原理的な単位としての細胞の発見などであり、また伝達遺伝学と呼ばれる繁殖にかかわる細胞生理学はラマルク的進化論を退け、分子生物学古典遺伝学分子遺伝学とした[24]

しかし生物学の形而上学における還元主義は常に議論の的であった。議論のルーツは、19世紀末から20世紀初頭の生気論機械論論争にまで遡ることができる。生物学と物理学、生化学はどのように関連するか。生物学はそれ自身の理論を持っているか。物理学や化学の一分野となるべきか[24]。還元主義は戦略か、教育や説明のための便利な道具に過ぎないか(エルンスト・マイアは貧弱な戦略と見なし、多くの分子生物学者は優れた戦略と見なした)[26]。さらに、生態系は個体群の集合に過ぎないか、種は個体の集合に過ぎないか、個体が細胞の集合に過ぎないか、自然環境における動植物の複雑な関係(生態学)、個体における全体と部分の関係(解剖学生理学)、の初期段階の均一性と成体のパーツの異質性の関係(発生学)はどのようになっているのか[24]

還元主義に関するもっとも激しい議論は1950年代にメンデル遺伝学分子生物学の間で行われた。この議論で、遺伝学は完全に分子生物学化されるとする強い還元主義と、遺伝学は分子生物学から何も学ぶことはないとする強い反還元主義の対立が起きた[2]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:77 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef