軌間
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

またケープ植民地南アフリカ)やニュージーランドでは、一旦標準軌での鉄道建設が始まっていたものが、狭軌に切り替えられている[33][34]タイインドネシアでは、先行していた標準軌鉄道とは別に狭軌の鉄道が建設され、その後長い時間をかけて狭軌に統一された[35][36]

インドとオーストラリアでは、すでに広軌や標準軌の鉄道網がある程度発達していたにもかかわらず、狭軌の鉄道も並行して建設されるようになった[37][38]。このため複数の軌間が混在する状況が生じ、21世紀に至っても完全には解消されていない[39][40]

すでに標準軌の普及していたヨーロッパや北アメリカでも、標準軌路線を作るほどの需要のない地域での軽便鉄道の規格として狭軌は広く用いられた[31]デンバー・アンド・リオグランデ鉄道の狭軌車両

アメリカ合衆国では、1871年に3フィート軌間のデンバー・アンド・リオグランデ鉄道の最初の区間が開通した[41]。1872年には第1回全米狭軌鉄道会議(National Narrow-Gauge Railway Convention)が開催され、3フィート軌間がアメリカにおける狭軌の統一規格として合意されるとともに、標準軌鉄道に代わって狭軌の幹線鉄道網を築くという野心的な計画も示された[42]

しかし、狭軌鉄道がある程度普及してくると、狭軌は従来主張されていたほど経済的ではないことが明らかとなった。オーストラリア・クイーンズランド植民地の鉄道の建設費は当初予算を40 %も超過した[38]。またアメリカ合衆国の狭軌鉄道会社でも、1880年代には標準軌鉄道との積み換えを避けるための改軌が相次いだ[43]。アメリカ合衆国のアーサー・M・ウェリントン(英語版)は1887年の著書で、狭軌鉄道の利点とされていた建設費の安さや曲線通過性能は、実際には軌間にほとんど依存せず、ランニングコストはかえって高くなってしまうと述べた。狭軌を使う意味のあるのは、車体サイズなどを小さくした低規格の軽便鉄道の場合に限られる。しかしウェリントンやその支持者たちの主張では、建設段階では需要の少ない路線であっても、狭軌ではなく標準軌で建設したほうが、将来の改良で本線鉄道網の一部とすることが容易であるため好ましいとしている[44]

アメリカ合衆国やイギリスではこの主張が比較的早く受け入れられたが、大陸ヨーロッパにおいては20世紀前半においても狭軌の軽便鉄道の建設が続いた[44]。しかし自動車が普及してくると、速度や輸送力の劣る軽便鉄道は競争力を失い、多くが廃止に追い込まれた[45]
20世紀以降の傾向

20世紀に入ってからは、新たに鉄道の軌間を選択する機会そのものが稀になったこともあり、軌間の優劣に関する議論は低調になった[46]。20世紀初めごろには日本日本の改軌論争)や南アフリカオーストラリアアメリカ合衆国などで、狭軌鉄道を標準軌に[注釈 3]、あるいは標準軌を広軌に[注釈 4]改軌すべきであるという議論が起こったが、オーストラリアのいくつかの狭軌鉄道が標準軌に改軌された例を除いて、いずれも実現には至っていない[47]ナチス・ドイツでは軌間3000 mmの超広軌鉄道「ブライトシュプールバーン」が計画されていた[48]

20世紀後半以降に新たに建設された鉄道では、標準軌が採用される例が多い。日本の新幹線や多数の製鉄所構内鉄道が、狭軌の在来線網とは独立した形で標準軌を選んだのがその最たるものである。またアフリカ各国やブラジル、オーストラリアでは、従来の狭軌鉄道とは別に、鉱山用や通勤用に標準軌で鉄道を新設した例がある。逆にスペインなどは在来線は広軌だが、高速列車のAVEはフランスなどとの接続を考えて、また通勤用の鉄道は車両限界をなるべく小さくして建設費用や車両新製費用を抑えるために、いずれも狭い標準軌で施設されている。こうした選択は、既に存在する技術を活用でき、車両や資材の調達もしやすいことによるものである[49]
軌間の広狭による性質

一般的に、軌間が広いほど輸送力や最高速度など鉄道の能力は高まり、逆に狭いほど建設費は安くなるとされる。ただしこれらには様々な要因があり、単純に軌間のみで決まるわけではない[1]。また時代によりその評価は変わっており、論拠の一部は特定の時代の技術に依存したものである[50]
安定性BART

鉄道車両には鉛直方向の重力のほか、横風や走行時の車両の動揺、曲線通過時の遠心力などにより横方向の力がかかっている。車両の重心からこれらの力の合力方向にひいた直線が線路面と交わる位置が、片方のレールの外側になると、車両は転覆してしまう。また、軌道の中心から軌間の6分の1以上ずれると、脱線の確率が高まることが知られている[51]

このため、重心の高さが同じであれば広軌のほうが横方向の力に対してより安全であるといえる。特に列車の速度が速くなるほどこうした力の影響は大きくなるため、高速運転には軌間の広いほうが適している。狭軌の場合は、横方向の力の発生を防ぐためより精度の高い保線作業が必要となる。また同程度の安定性を求めるのであれば、軌間の広いほうが重心を高くすることができ、大型の車両を用いることができる[52]

1850年代インドの鉄道で広軌(1676 mm)が採用された理由のひとつとして、軌間が広いほうがサイクロンなどの強風に対して安全であるということが挙げられている[53][14]。また1973年アメリカ合衆国カリフォルニア州サンフランシスコ・ベイエリアで開業したBARTでも、湾岸地域での横風に対する安定性を考慮して1676 mm軌間とコンクリート道床の組み合わせを採用した[54]
機関車の性能グレート・ウェスタン鉄道の広軌機関車

蒸気機関車の用いられていた時代には、軌間の広いほうが機関車の性能が高いとされていた。これは1830年代から20世紀前半に至るまで、広軌の優位性を主張する最大の根拠であった[55]

1830年代から40年代初頭まで、蒸気機関車のシリンダーは車輪の内側に取り付けられていた。これは、シリンダーを外側にすると蒸気が空気で冷やされて効率が落ちると考えられたこと、また機関車の車体に左右交互に力が加わるため、当時の技術ではこれに耐えられるような台枠が作れなかったことによるものである。このため、シリンダーの大きさは軌間に大きな影響を受けた。加えて、この時代の弁装置は大きく、頻繁な保守作業を必要とした。これも車輪の内側におかれたため、狭い軌間はメンテナンスが困難であるとして嫌われることになった[55]。これ以外にもシリンダーから動輪の軸に力を伝えるクランク部分が広軌の方が広くとれるので摩耗や強度的に有利orクランクが同じ幅ならより外側にずらすことでボイラー下部と干渉しにくくなり、ボイラー高さを抑えられたり太いボイラーが使えるというメリットもあった[56]

ただし、1840年代半ば以降になると、車体の製造技術の向上などにより外側シリンダーの蒸気機関車が製造可能になり、シリンダーの大きさが軌間に制約されることはなくなった[55]。むしろ外側シリンダーでは車両限界や特にボイラーの太さが同一ならば広軌の方がシリンダーをより外側につけるため、シリンダーの大きさを妨げる原因になり[57]イギリスの軌間問題に関する王立調査委員会は、1845年の報告で7フィート軌間のほうが4フィート8 1/2インチ軌間より機関車の性能が優れていることは認めつつ、その差は僅かであると指摘している[11]

一方で、軌間の広いほうが高い重心が許容されるため、火室(英語版)やボイラーを大型化し、出力を向上させることができる[55]。19世紀半ばまでは低い蒸気圧しか使えなかったため、この点は大きな差にはならなかった。しかし使用蒸気圧の増した19世紀末から20世紀であれば、軌間と蒸気機関車の性能にはより強い関係があった[11]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:131 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef