質量
[Wikipedia|▼Menu]
慣性質量の異なる物体を同じように円運動させたとき、慣性質量が大きいほど円運動を維持するのに必要な力は大きくなる。

経験的に、慣性質量の大きな物体は重力質量が大きい、つまり「地球の重力で引っ張られて重い」(持ち上げにくい)と感じられる物ほど、「無重力状態でも動かしにくい」ことが知られている。この事実から、慣性質量と重力質量の違いに因われることなく、物体の重さを感じることができる。この慣性質量と重力質量の関係性を直接的に示すものが落体の法則である。落体の法則によれば、自由落下する物体の運動は、物体の重力質量に依らず同じであり、このことから重力質量と慣性質量が等価であることが導かれる。重力質量と慣性質量の等価性から、両者を区別することなく、単に質量と呼ぶことができる。この現象は、基本的には一般相対性理論等価原理によって説明される。
二つの質量

質量の定義説明には慣性質量と重力質量の 2 通りある。
慣性質量

慣性質量(inertial mass)mI はニュートンの運動方程式において導入される量である。物体に作用する F と物体の加速度 a の比例係数として次の様に表される。

m I a = F . {\displaystyle m_{\mathrm {I} }{\boldsymbol {a}}={\boldsymbol {F}}.}

これは実際に実験を行い、物体を(ばねの変形などによる)既知の力で引っ張ったときの加速度を調べ、比例係数を計算することで求められる。慣性質量は物体の動きにくさ(あるいは止まりにくさ)を表す値であるといえる。
重力質量

重力質量(gravitational mass)mG は重力万有引力によって生じる駆動力あるいは周囲におよぼす荷重)を起こす質量のことである。物体に作用する重力 FG とその場所での重力加速度 g により次の様に表される。

F G = m G g {\displaystyle {\boldsymbol {F}}_{\mathrm {G} }=m_{\mathrm {G} }{\boldsymbol {g}}}

これは体重計などで計ることができる、「重さ」による質量の捉え方である。
等価原理詳細は「等価原理」を参照

両者は全く別の事象であるが、これらは同一の値を取る。この経験則を等価原理といい、エトヴェシュ・ロラーンドなどが行った実験により高い精度で示されている。落体の法則振り子等時性といった法則は、この原理のために成り立っている。だが、なぜ慣性質量と重力質量が同じ値をとるのかという理由は、現在でもわかっていない。慣性質量が生じる仕組みについてはヒッグス粒子によるヒッグス機構が唱えられているが、これは重力質量にはあてはまらない。重力質量発生のしくみは重力子交換によるものであると考えられている[要出典]。
相対論的質量

光速に近い速度で運動する物体の質量が増えるといわれることがある。これは相対論的質量とよばれる考え方で、速度の大きな物体についてF = m a が成り立つように相対論的効果を質量に押し付けた場合に現れる。現在[いつ?]では、このような相対論的質量の考え方を用いないのが運動方程式 が一般的である。詳しくは特殊相対性理論を参照。
E=MC^2

特殊相対論において、光のエネルギーが観測者の速度に寄って増減して見えることが示された。これが光源の運動エネルギの観測者に寄る増減と釣り合って保存すると考えたときに、

C( m v^2) ≒ (v^2 / c^2 )L

という近似式が導かれる。Cが定数、mが光源の質量、vが光源との速度、cが光速、Lが光源から見た光のエネルギ(光は光源から光軸の正負2方向均等に放射する前提)。

上式の右辺は、光源から見た光エネルギLに対する、(光放射方向の)速度vで移動する観測者にとっての増加分である。それと釣り合うはずの、観測者速度に依存する運動エネルギの変化分が左辺である。両辺にv^2があるからこの関係は観測者速度に寄らない。そして放射された光エネルギLと釣り合うだけの Cm = L / c^2 なる値の質量変化が光源に起きているはずで、光によって慣性量が輸送されることが示唆される。

 というのがアインシュタインによるエネルギと質量の可換性についての指摘である。(特殊相対論の2本目とされる文書“Ist die Tragheit eines Korpers von seinem Energieinhalt abhangig? [物体の慣性は、そのエネルギーの大きさに依存するか]”)

 なお、電磁波の等価質量についてはアインシュタインや相対論以前から議論されていた。
他の物理量との関係

マクロな物質の質量は同一物質で同温同圧の条件下においては、経験的に体積におおよそ比例することが知られている。この性質から、特に温度や圧力による体積変化が少ない固体液体において、物質ごとに定まる物理量としての密度が用いられる。

これより、均一物質を分けた場合、その体積比と質量比はおおよそ一致することとなる。この性質により、物質を根源となる粒子まで細かく分けていけば、その粒子の種類ごとに質量が定まり、その粒子の質量の総和が物質の質量となるという、いわゆる原子論の類の説が説得力を持つことになる。アヴォガドロの分子説の根幹である「同温・同圧の気体中には同数の分子が存在する」という主張も、体積と質量の比例関係から一定の説得力を得られるのである。これらの化学の発展に基づき、同一物質であれば質量に比例する物質量が定義されるに至った。

ニュートン力学においては、と質量、加速度の関係を表す運動方程式、 F = m a {\displaystyle {\boldsymbol {F}}=m{\boldsymbol {a}}} F:物体に働く合力、m:物体の質量、a:物体の加速度

が成り立つ。これは運動の第2法則 F = d p ( t ) d t {\displaystyle {\boldsymbol {F}}={\frac {\mathrm {d} {\boldsymbol {p}}(t)}{\mathrm {d} t}}}

運動量 p と質量 m および速度 v の関係 p ( t ) = m v ( t ) {\displaystyle {\boldsymbol {p}}(t)=m{\boldsymbol {v}}(t)}

を適用したものである。

特殊相対性理論においては、物体のエネルギーは E c = m d ( c t ) d τ {\displaystyle {\frac {E}{c}}=m{\frac {d(ct)}{d\tau }}} E:物体のエネルギー、c:光速、m:物体の静止質量、t:観測者の時刻、τ:固有時


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:33 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef