触媒
[Wikipedia|▼Menu]
均一系触媒

均一系触媒には、適当な塩基を触媒(酸触媒、塩基触媒)とするものや、錯体を利用するもの(錯体触媒)がある。金属錯体では配位子を替えることなどによって反応性の制御が可能である。例えば、カルボン酸とアルコールのエステル化反応には酸触媒が有効である。酸としては硫酸などの H+ を放出するブレンステッド酸を用いる場合が多いが、不斉合成などでは金属錯体などのルイス酸を使うことも多い。

また多核金属酸化物(アニオン)であるポリ酸ヘテロポリ酸)も構造制御が可能であり、反応性を制御できる。有機金属錯体は一般に酸化雰囲気および熱に弱いが、多くのポリオキソメタレートはそれらに対し高い安定性を有している。
不均一系触媒

化学工業など、基礎的な化学物質を大量に生産する施設では、気相での固定床もしくは流動床流通式反応装置がしばしば用いられること、液相反応においても生成物の分離回収が容易であること、一般に錯体触媒よりも耐久性が高いなどの理由から、不均一系触媒が多く用いられている。不均一系触媒は、白金パラジウム酸化鉄のような単純な物質から、それらを担持したもの(後述)、ゼオライトのような複雑な構造の無機化合物、あるいは金属錯体を固定化したものなど、多種多様である。

多くの場合、反応は不均一系触媒の表面で進行する。したがって、触媒の効率を良くするためには、表面積を大きくすることが重要となる。このため、高価な金属(白金、パラジウムなど)を触媒として用いる場合は、1–100 nm 程度の微粒子にして活性炭シリカゲルなど(担体という)の表面に分散させ(担持し)て使用する。金属錯体触媒を表面に固定化する場合には、担体の表面官能基をアンカーにして化学結合させる場合が多い。担体は単に活性成分を微粒子化(高表面積化)するだけでなく、触媒活性にも多大な影響を与える場合がある。そのため、適切な担体との組み合わせが必要である。

具体例として、自動車には排気ガスに含まれる炭化水素(hydrocarbon、HC)、一酸化炭素(CO)、窒素酸化物(NOx)を分解・浄化するために白金、パラジウム、ロジウムもしくはイリジウムを主成分とする三元触媒が不均一系触媒として使用されている。
生体触媒

生体中で触媒として機能するタンパク質酵素という。酵素を使った反応は水中で行えるため溶媒の使用を減らすことができ、また室温付近で作用し、しばしば人工的には困難な反応に高い選択性を示すことから、環境負荷の低い触媒として期待されている。実際にブタの肝臓などから得られる酵素は工業的にも生体触媒として利用されている。
有機分子触媒

有機分子触媒」を参照。
有名な触媒反応

新しい触媒が開発されると、社会的にも非常に大きな影響を与えることがある。

ハーバー・ボッシュ法 - 史上初めて人工的に窒素アンモニアへと変換した反応。二重促進触媒を用いる。1918年ノーベル化学賞

チーグラー・ナッタ触媒 - ポリエチレンなど、優れた特性を持つ高分子の生産を可能とした。チタン錯体を触媒とする。1963年ノーベル化学賞。

メタセシス反応 - 有機合成で極めて多用される、2つのオレフィンの結合を組み替える反応。ルテニウムを中心とするグラブス触媒が用いられる。2005年ノーベル化学賞。

カップリング反応 - 炭素-炭素結合を作るうえで欠かせない反応。辻二郎によるパラジウムを用いた炭素-炭素結合形成反応の発見を契機に、多くの日本人化学者が関与した。鈴木・宮浦カップリング右田・小杉・スティルカップリング根岸カップリングなど、パラジウム錯体の用例が多い。2010年ノーベル化学賞。

不斉合成 - キラリティーの一方のみを選択的に得る。金属錯体を中心に、数々の触媒が開発されている。2001年ノーベル化学賞。

燃料電池 - 水素メタノールを燃料として発電する装置。固体高分子型燃料電池 (PEFC) は室温付近の温和な条件で機能するが、2006年現在では、電極触媒として高価かつ資源量の少ない白金やCO耐性のある白金ルテニウム合金を使用しないと高い電力を取り出すことができず、普及には貴金属使用量の劇的な削減が必要である。

身近なところで使用されている触媒反応の例

全ての石油製品は触媒反応により合成されていると言っても過言ではないが、身近なところでは、以下のものが広く利用されている。

ガソリンエンジン車の三元触媒 - 先述の不均一系触媒の節を参照。

白金を触媒とし、炭化水素燃料との反応熱を利用するカイロ。廃棄物を出さない触媒反応カイロは近年見直されつつある。

発酵 - 微生物は数々の触媒(酵素)反応を組み合わせて、糖からアルコールや乳酸を合成する。

重要性左:部分的にカラメル化した角砂糖、右:灰を触媒として燃焼中の角砂糖

商業的に生産される化学製品の90%くらいは、その製造過程のどこかの段階で触媒が関与している。2005年、触媒プロセスは全世界で約9000億ドルの製品を生み出した。[10]

触媒作用は非常に広範囲に及んでいるため、小領域を容易に分類することはできない。以下に、特に集中している分野をいくつか挙げる。
エネルギー処理
バルク化学製品
ファインケミカル
食品加工
環境
脚注[脚注の使い方]^ a b IUPAC (2012-03-23). ⇒“catalyst”. Compendium of Chemical Terminology (the Gold Book) (2nd ed.). Oxford: Blackwell Scientific Publications. doi:10.1351/goldbook.C00876. .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}ISBN 0-9678550-9-8. ⇒http://goldbook.iupac.org/C00876.html 
^ a b 田中一範『あなたと私の触媒学』裳華房、2000年、3頁。 
^ 田中一範『あなたと私の触媒学』裳華房、2000年、4頁。 
^ 尾崎萃. “ ⇒「触媒」の名付け親は誰か”. 2012年7月12日閲覧。
^ IUPAC (2012-03-23). ⇒“catalysis”. Compendium of Chemical Terminology (the Gold Book) (2nd ed.). Oxford: Blackwell Scientific Publications. doi:10.1351/goldbook.C00874. ISBN 0-9678550-9-8. ⇒http://goldbook.iupac.org/C00874.html 
^ ベルセリウス著(田中豊助、原田紀子訳)「化学の教科書」p145、内田老鶴圃、ISBN 4-7536-3108-7
^ 「触媒研究所. 一 触媒化学と化学工業. 二 触媒研究所の設置. 三 触媒研究所の概要. 四 触媒研究所拡充期成会. 五 研究内容の概略. 六 研究成果. 七 紀要『触媒』及び『JRIC』の刊行. 八 触媒学会誕生と触媒研究所. 九 研究交流. あとがき. 年表」『北大百年史』 1980年 p.1251-1309, 北海道大学
^ IUPAC (2012-03-23). ⇒“poison in catalysis”. Compendium of Chemical Terminology (the Gold Book) (2nd ed.). Oxford: Blackwell Scientific Publications. doi:10.1351/goldbook.P04706. ISBN 0-9678550-9-8. ⇒http://goldbook.iupac.org/P04706.html 


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:31 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef