複写機
[Wikipedia|▼Menu]
感光体上に残った電荷をできる限り0にするため、感光体表面へ均一に光を当てたり(前露光)、交流放電をかける。
クリーニング
感光体上のトナーは100%転写紙へ移るわけではないので、感光体上のトナーを荷電ブラシやゴムブレード等で回収する。
用紙搬送部
給紙部
用紙トレイから一枚ずつ転写紙を複写機内部へ送り込む。多重送りを防ぐ機構に、分離爪方式、分離ローラー方式、分離パッド方式がある。
レジスト部
用紙の先端と画像の先端をあわせるため、一度転写紙を止めてタイミングを合わせる。また、ループを形成し、給紙時に生じる斜め送りを是正する作用もある。また、レジストの制御により、用紙先端余白幅の調整も行われる。
転写、分離部
作像部の転写、分離と同じ。
搬送部
転写後の用紙を定着部へと搬送する。熱に弱い感光体と、高温部の定着部との距離を保つ役割も兼ねている。
定着部
転写紙上のトナーは不安定なため、熱または熱と圧力(ニップ圧)を同時に加え、トナーの樹脂成分を溶着させる事で定着させる。方式として、ローラ定着(「ローラー」という表記もあるが工業用語では長音が略される)・フィルム定着・フラッシュ定着などがある。
ローラ定着
筒状の金属を芯材としてシリコン等で薄くコーティングした「定着ローラ」と、棒状の金属を芯材としてシリコン等を厚くコーティングした「加圧ローラ」の組み合わせにより、トナーの定着を行う。ローラ自体が保温材を兼ねており、定着温度の安定性が比較的高いのと、ニップ圧を比較的管理しやすいため、高速機やカラー機に多く使われている。しかし、保温材であるローラが規定温度に達するまでに時間がかかるため、立ち上がり時間が長いというデメリットもある。発熱材としては、長い間
ハロゲンランプが使われていたが、近年ではIH方式(誘導加熱による方式)が主流になりつつある。
フィルム定着
定着ローラのかわりに、セラミックヒータと筒状フィルムを組み合わせた方式。多くの場合、加圧はローラ定着方式と同じく加圧ローラを使う。保温材が加圧ローラしか無いため、セラミックヒータが発する熱を直接定着に使う。そのため、立ち上がり時間は非常に短い。温度保持特性や耐久性においてローラ定着方式に劣るため、多くの場合は、普通紙による文書がメインのビジネス向けレーザ機に使われる。
フラッシュ定着
キセノン管を使用したフラッシュ光を凹面鏡等で集光し、その熱でトナーを溶解させて定着させる方式。装置が非常に大掛かりであり、それによって機器も非常に高価となるため、一般的なオフィス向け複写機には使われない。用紙に対して触れる物が無いため、用紙へのダメージ(シワ・再転写等)が無く、スピードも非常に高速である。また、光量や照射時間を細かくコントロールすることによって、定着性のコントロールがきめ細かくできる。
排紙部
定着後の用紙が、溶解したトナーの粘性で、定着ローラーに巻き付く事を分離爪で防止させ、排紙トレイに導く。
スキャナ部
デジタル式

デジタル式複写機の場合、コンピュータ用のスキャナと同様の仕組みで原稿をデジタルデータ化し、感光体を露光するレーザー光を生成する。
CCD方式
最も一般的な方法。第一・第二ミラー台が機器正面から見て左右に動き、第一ミラー台の原稿照明ランプにより発せられた光により原稿を第一?第三ミラーを経由してCCDイメージセンサに導かれる。CCDは固定されている。各ミラーが汚れると、画像の一部に帯状の汚れが発生したり、若しくは画像全体が黒くなるなどのトラブルがあるため、定期的な清掃が必要。
CIS方式
機器正面から見て左右に動く読み取り部に、原稿照明ランプとCCD・グラスファイバアレイが組み合わされた読み取り部が集約されている。構造上、光路上に異物が混入するおそれが非常に少ないため、ほぼメンテナンスフリーといえる。また、簡単な構造のため、小型化しやすいというメリットも併せ持つ。デメリットとして、原稿のシワ・折れなどにより原稿台ガラスと原稿が離れてしまった場合、影やボケ・裏写りが発生する場合が多い。
アナログ式

アナログ式複写機の場合、原稿に照射した光源の反射光を、ミラーで誘導し、レンズを通して倍率とピントを調整して直接感光体へ当てている。
第一ミラー台
原稿照明ランプと第一ミラーにより構成され、原稿読み取りの第一段階。
第二ミラー台
第二・第三ミラーにより構成。移動速度は、第一ミラー台よりも遅い。
レンズ台部
Xモータ・Yモータによって移動し、倍率及びピントの補正を行う。
第四・第五・第六ミラー
レンズ台部を通過した光をドラムに導く。第一?第三ミラーと違い、動かない。また、第六ミラー直後には防塵ガラスがあり、ドラムまわりから飛散したトナーが光路を汚さないようになっている。

アナログ方式で倍率変更を行う場合、主走査方向倍率はレンズによる倍率変更であるが、副走査方向は第一・第二ミラー台の移動速度を変更して行う。
オプション

スキャナ部のオプションとして、以下のようなものを接続することが可能な製品もある。
自動原稿送り装置(ADF, Automatic Document Feeder、フィーダとも)
複数枚の原稿を自動的にスキャナに送り、連続して原稿を読み込ませる装置。オフィス向け製品に搭載されることが多い。
カラーコピーの仕組み

PPC複写機の一種である。
PPC複写式のように光を複製したい紙に当てるが、カラーコピーでは
カラーフィルタ(カラーCCD)でをRGB(それぞれの頭文字、光の三原色)に分解し、それを信号化する。

分解された色の信号はコンピュータによって処理され、コンピュータはYMC(イエローマゼンタシアンそれぞれの頭文字、色の三原色)とBk()に信号を変換する。

PPC複写式のようにトナーを紙に写していくが、カラーコピーではコンピュータからの信号で場所によって違う色のトナーを載せていく(メーカーによって黒の載せる順番が違う)。

以前は、紙を中間転写ローラーに巻きつけ、各色毎にトナーを転写していたが最近の機種は、中間転写体に各色のトナーを転写し、そのトナーを紙に転写する構造になっている。これは、コピー速度を上げるためや、中間転写体を用いても色ぶれを起こさない制御が可能になったためである。
カラーコピーの現像方式
ロータリー現像方式
基本構造は使用するトナー色の数だけ現像部を使用して、感光体は一つですませてしまう方式。現像部から感光体に載せられたトナーは中間転写体上へ転写されそのまま保持される。この後現像部の位置を入れ替えて、トナー色の数だけ感光体→中間転写体へ転写し、最後に用紙上へトナーを再転写させる。現像部の入れ替え方式や納められている構造が
リボルバー式拳銃の弾倉に似ているためにロータリー(回転体)現像方式と呼ばれるようになった。一部のメーカーではそのまま「リボルバー現像方式」と呼んでいる場合もある。1枚の複写に各色の工程が必要なため、動作は遅い。
タンデム現像方式
ロータリー現像方式が感光体を1つしか使わないことに対して、タンデム現像方式はトナーの数だけ感光体を利用する。つまりPPC複写機の作像部全体が複数あることになる。現像部が入れ替わらないため、ロータリー現像方式に比べて中間転写体上でのトナー像作成時間が短くなる。これによって複写機の複写速度を上げることができる反面、機械本体や作像部が大きく作られてしまうなどのデメリットも存在する。
銀塩写真方式
読み取った原稿画像を、写真の印画紙のようなものへ露光させる方式。大がかりなインスタントカメラの様な方式のもの。または印画紙のようなものへ露光すると、印画紙内部で普通紙へ転写可能なインクのポジ画像を作るものもある。この場合は印画紙と用紙を密着させ圧力などで転写させる事になる。感光体や現像部を持つ必要がないため機械の小型化が可能であるが、専用用紙のコストが高いなどの理由により現在ではあまり見ることのできない方式になった。
カラー複写機の注意点

通常、モノクロ複写機と比較して定着温度及びニップ圧が高く設定されているため、違う機種の裏紙を使用した場合、裏紙に付いているトナーが溶融して加圧ローラや定着ローラに付着し、さらに用紙に付着してしまう「再転写」という現象が起こる場合がある。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:32 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef