積分判定法
[Wikipedia|▼Menu]
.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









数学において、積分判定法(せきぶんはんていほう、: integral test for convergence)は非負項無限級数収束性を判定する方法の一つである。コリン・マクローリンオーギュスタン=ルイ・コーシーによって発展させられたことから、マクローリン・コーシーの判定法の呼称でも知られている。
判定方法

整数 N と、非有界区間 [N, ∞) で定義された単調非増加な実数値関数 f を考える。このとき無限級数 ∑ n = N ∞ f ( n ) {\displaystyle \sum _{n=N}^{\infty }f(n)}

がある実数へ収束するための必要十分条件は、広義積分 ∫ N ∞ f ( x ) d x {\displaystyle \int _{N}^{\infty }f(x)\,dx}

が有限値であることである。言い換えると、積分が発散するとき級数もまた発散する。
注意

広義積分が有限値のとき、次節の証明からは級数の収束値の上界・下界をも得ることができる。 ∫ N ∞ f ( x ) d x ≤ ∑ n = N ∞ f ( n ) ≤ f ( N ) + ∫ N ∞ f ( x ) d x {\displaystyle \int _{N}^{\infty }f(x)\,dx\leq \sum _{n=N}^{\infty }f(n)\leq f(N)+\int _{N}^{\infty }f(x)\,dx} (1)
証明

証明は基本的に比較判定法を用いる。区間[n ? 1, n) と [n, n + 1) のそれぞれで、f の積分値と項 f(n) を比較する。

f は単調非増加関数だから、 f ( x ) ≤ f ( n ) for all  x ∈ [ n , ∞ ) {\displaystyle f(x)\leq f(n)\quad {\text{for all }}x\in [n,\infty )}

であり、また f ( n ) ≤ f ( x ) for all  x ∈ [ N , n ] {\displaystyle f(n)\leq f(x)\quad {\text{for all }}x\in [N,n]}

である。よって任意の整数 n ? N に対し ∫ n n + 1 f ( x ) d x ≤ ∫ n n + 1 f ( n ) d x = f ( n ) {\displaystyle \int _{n}^{n+1}f(x)\,dx\leq \int _{n}^{n+1}f(n)\,dx=f(n)} (2)

であり、任意の整数 n ? N + 1 に対し f ( n ) = ∫ n − 1 n f ( n ) d x ≤ ∫ n − 1 n f ( x ) d x {\displaystyle f(n)=\int _{n-1}^{n}f(n)\,dx\leq \int _{n-1}^{n}f(x)\,dx} (3)

である。

N からある大きな整数 M までの全ての n にわたる和をとることで、(2) から ∫ N M + 1 f ( x ) d x = ∑ n = N M ∫ n n + 1 f ( x ) d x ⏟ ≤ f ( n ) ≤ ∑ n = N M f ( n ) {\displaystyle \int _{N}^{M+1}f(x)\,dx=\sum _{n=N}^{M}\underbrace {\int _{n}^{n+1}f(x)\,dx} _{\leq \,f(n)}\leq \sum _{n=N}^{M}f(n)}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:45 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef