磁気
[Wikipedia|▼Menu]
1949年になると、ネヴィル・モットによって、電子相関に伴う遍歴電子の局在化の概念がもたらされ[5]、1959年にはフィリップ・アンダーソンによってモットの概念を用いてハバード・モデルにおける電子の局在化の基礎付けがなされた[6]。これによって、遍歴電子と局在電子を統一的に扱う枠組みが確立した。この功績によってモットとアンダーソンは、同じく磁性について研究していたジョン・ヴァン・ブレックと共に、1977年ノーベル物理学賞を受賞した(授賞理由:磁性体と無秩序系の電子構造の基礎理論的研究)。

20世紀後半になると、銅酸化物系高温超伝導体と磁気秩序の関連、磁性の工業的利用、スピントロニクスの発展等から、物質中の電子の持つスピンの性質に対するより深い理解への欲求が強まり、物質中の磁気秩序の解明が進んだ。物質中の磁気構造を人工的に操作することも可能になり、磁区と呼ばれる強磁性の構造に情報を記録するハードディスクドライブも実用化された。
磁性の源「磁気モーメント」も参照

磁性と角運動量には密接な関係があり、微視的には「磁化による回転」を示すアインシュタイン・ド=ハース効果と、その逆の「回転による磁化」を示すバーネット効果がある[7]

原子およびそれよりさらに小さいスケールでは、この関係は磁気モーメントと角運動量の比、すなわち磁気回転比で表される。

磁性の源泉は2種類ある。

電流または移動する電荷によって磁場が形成される(マクスウェルの方程式

多くの素粒子はゼロでない「真性」(または「スピン」)磁気モーメントを持つ。それぞれの粒子に質量電荷があるように、ゼロでない磁気モーメントを持つことがある。

物体が磁性を持つ物理的原因は、電流の場合とは異なり、原子に生じる磁気双極子である。原子スケールでの磁気双極子、あるいは磁気モーメントは、電子の2種類の運動によって生じる。1番目は原子核の周りを回る電子の軌道運動である。これは電流のループと見なすことができ、原子の軸方向に軌道磁気モーメントを生じる。2番目の、もっとずっと強い磁気モーメントの源は、スピンと呼ばれる量子力学的な性質である。これはスピン磁気モーメントと呼ばれる。なお原子核にも磁気モーメントは存在するが、一般に電子のそれの数千分の1の強さしかなく、物質の磁性にはほとんど影響しない。しかし、例えば核磁気共鳴 (NMR) や核磁気共鳴画像法 (MRI) は、その原子核の磁気モーメントを利用している。

原子の全体的な磁気モーメントは、個々の電子の磁気モーメントの総和になる。磁気双極子は互いに反発してエネルギーを小さくしようとするため、軌道運動においてもスピン磁気モーメントにおいても、いくつかの電子のペアが持つ反対向きの磁気モーメントは互いに打ち消しあう。このため、電子殻や副殻が完全に満たされている原子では磁気モーメントは通常は完全に打ち消される。磁気モーメントを持つのは電子殻が部分的に満たされている原子だけであり、その強さは不対電子の数で決まる。

そのため、様々な元素ごとの電子配置の違いが原子の磁気モーメントの性質や強さを決めており、また様々な物質の磁気的な特性の違いをも決めている。また、温度によっても磁気的特性は変化する(高温では無作為な分子の運動によって電子が一定方向にそろって運動し続けるのが困難になる)。様々な物質で以下のようないくつかの形態の磁気的な振る舞いが見られる。
様々な磁性
反磁性詳細は「反磁性」を参照

反磁性はあらゆる物質に存在し、磁場に反発する傾向を示す。しかし、常磁性(外部の磁場を強化する傾向)のある物質では常磁性が支配的になる[8]。したがって、あらゆる物質が反磁性を持つにもかかわらず、反磁性的現象は反磁性しか持たない物質でしか観測されない。反磁性物質では電子は必ず対になっており、電子のスピン磁気モーメントは常に相殺されて巨視的効果を全く引き起こさない。その場合、磁化は電子の軌道運動から生じ、古典的には次のように理解できる。

物質を磁場に置くと、原子核の周囲を回っている電子は原子核との間のクーロン力に加えて磁場によるローレンツ力を受けることになる。電子の運動の方向によって、向心力が強まって電子が原子核に引き寄せられたり、逆に引き離されたりする。このため、磁場と逆向きの軌道磁気モーメントを持つ電子の磁気モーメントは強くなり、磁場と同じ方向の軌道磁気モーメントを持つ電子の磁気モーメントは弱められる(レンツの法則)。結果として、物質全体では磁場とは逆向きの磁気モーメントが生じる。

なお、この解説は一種のヒューリスティクスであって、真の理解のためには量子力学を持ち出す必要がある。

あらゆる物質でこのような電子軌道の変化が起きるが、常磁性や強磁性の物質では対になっていない電子の効果が相対的に大きいため、反磁性的現象は観測できない。
常磁性詳細は「常磁性」を参照

常磁性の物質には対になっていない電子があり、原子軌道または分子軌道に1つしか電子が存在しない。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:53 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef