相空間
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

状態の空間的に連続的に分布している偏微分方程式で記述されるような力学系では、相空間の次元は無限になる[28][29]
種類

一般的なレベルでの力学系(とくに位相力学系)では、相空間を位相空間(英: topological space)として設定する[30][31][32]。ただし、相空間をまったく純粋な位相空間に設定すると、あまり詳しい結果は得られない[33]。実際には、位相空間であることに加え、いくつかの前提(例えば距離空間であること)を相空間に持たせて議論される[34]。特に相空間がコンパクトであると仮定できれば、位相力学系に関する多くの結果を得ることができ、一般的な枠組みを議論できる[35][36]

力学系の例として多いのは、システムの状態がいくつかの実数の組 (x1, x2, … xn) で表される場合で、空間としてはユークリッド空間 Rn あるいはその部分集合で考えられることが多い[24][37][12]。力学系の軌道は特定の多様体上に制限されていることもあり、より一般的には相空間は多様体となる[24][38][39]。多様体に制限することで、それぞれの多様体が持つトポロジカルな性質を利用することもできる[40]。上記の単振り子の例でいえば、角速度 ω は単に実数だが、振れ角 θ の定義域は −π < θ ≤ π であり、これは幾何学的には円周と同一視できる[41][42][6]。したがって、単振り子の系の相空間は、円周 S1 または T1 と直線 R の直積集合で、幾何学的には無限に長い円柱面となる[43][41][42][6]。ただし、いくつかの注意を払えば、相空間を Rn あるいはその部分集合と仮定しても多くの場合で一般性は失われない[24][44]ロトカ・ヴォルテラの方程式における相平面上のベクトル場と軌道の様子

可微分力学系では相空間は微分構造を持ち、ベクトル場で定まる連続力学系がその典型例である[45]。状態変数を x = (x1, x2, … xn) ∈ X ⊂ Rn、時間を t ∈ R とする。力学系が n 連立一階微分方程式 d x k d t = f k ( x 1 , ⋯ ,   x n ) {\displaystyle {\frac {dx_{k}}{dt}}=f_{k}(x_{1},\cdots ,\ x_{n})} (1 )

で与えられるとき (k = 1,… n)、相空間上の各点にはベクトル f (x): X → Rn が対応する[46]。このとき、f (x) は解曲線の接ベクトルに一致し、各点が時間経過したときに動く方向と大きさを表す[47][48]

測度論的力学系を展開するときは、相空間は可測構造を持つ[49]。この場合、相空間 X に対して

X ∈ F

A ∈ F ならば Ac ∈ F

A1, A2,… ∈ F ならば ∪∞
i=1 Ai ∈ F

を満たすσ-集合体 F が存在し、A ∈ F に対して、

μ(A) ≥ 0 かつ μ(X) = 1

A1, A2,… ∈ F が互いに素ならば μ(∪∞
i=1 Ai) = ∑∞
i=1 μ(Ai)

を満たす確率測度 μ が与えられる[49][50]。さらに

A ∈ F ならば T−1A ∈ F

μ(A) = μ(T−1A)

を満たす保測写像 T を組にして測度論的力学系が成立する[49]

記号力学系では、相空間 X は記号列の集まりとなる[51]。記号が2種類から成り、記号列が両側無限列であるような場合、記号列 x は x = { ⋯ ,   a − 2 ,   a − 1 ,   a 0 ,   a 1 ,   a 2 ,   ⋯ } {\displaystyle x=\{\cdots ,\ a_{-2},\ a_{-1},\ a_{0},\ a_{1},\ a_{2},\ \cdots \}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:62 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef