発酵
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

水素ガスはメタン生成菌硫酸還元菌基質となるため、水素濃度は低く保たれ、このようなエネルギーに豊む化合物の生成に有利になるが[23]腸内ガスのようにかなり高濃度の水素ガスが生成されることもある[要出典]。

たとえば、細菌であるクロストリジウム・パストゥリアヌム(Clostridium pasteurianum)はグルコースを酪酸酢酸、二酸化炭素、水素ガスに発酵させる[24]。酢酸を生成する反応は次のとおりである。C6H12O6 + 4 H2O → 2 CH3COO? + 2 HCO3? + 4 H+ + 4 H2
メタン詳細は「メタン発酵」を参照

メタン発酵とは、メタン菌の有する代謝系のひとつであり、水素ギ酸酢酸などの電子を用いて二酸化炭素メタンまで還元する系である。メタン菌以外の生物はこの代謝系を持っていない。嫌気環境における有機物分解の最終段階の代謝系であり、特異な酵素および補酵素群を有する。
その他

その他の発酵には、混合酸発酵(英語版)、ブタンジオール発酵(英語版)、酪酸発酵、カプロン酸発酵、アセトン-ブタノール-エタノール発酵、グリオキシル酸発酵などがある[要出典]。
広義の発酵

食品および工業的な文脈では、管理された容器内で生物によって行われるあらゆる化学的修飾を「発酵(fermentation)」と呼ぶことがある。次にあげるいくつかの例は、生化学的な意味の発酵には該当しないが、広い意味では発酵と呼ばれるものである。
代替タンパク質「発酵食品の一覧(英語版)」を参照インポッシブル・バーガーに含まれるヘムタンパク質を製造するのに発酵が使用されている。

発酵は代替タンパク源の製造に使用されている。大豆のような植物性由来の食品を含む既存のタンパク質食品を、テンペ腐乳のような、より風味豊かな形に加工するためによく使われる。

より近代的な「発酵」では、肉類牛乳チーズの代用品を製造するのに役立つ組換えタンパク質が作られている。代表的な例をあげる[25]

人工肉用の組換えミオグロビン(Motif Foodworks)

組換えレグヘモグロビン(英語版)を使った人工肉(インポッシブル・フーズ

乳製品代替用の組換え乳清(パーフェクト・デイ(英語版))

組換え卵白(EVERY)

ミオグロビンやヘモグロビンなどのヘムタンパク質 (en:英語版) は、食肉に特徴的な食感、風味、色、香りを与える。ミオグロビンやレグヘモグロビンの成分は、肉からではなく、発酵槽から得られるにもかかわらず、こうした特性を再現することができる[25][26]
酵素

工業的発酵(英語版)は、酵素の生産にも利用することができ、触媒活性を持つタンパク質が微生物によって産生・分泌される。発酵プロセス、微生物工学、および組換え遺伝子技術の開発により、さまざまな酵素が商業的に製造されるようになった。酵素は、食品(乳糖除去(英語版)、チーズ風味)、飲料(ジュース製造)、製パン(パンの軟化、生地の調整)、動物飼料洗剤(タンパク質、デンプン、脂質の汚れ除去)、繊維、パーソナルケアパルプ・製紙など、あらゆる産業分野で使用されている[27]
工業的生産の方式

ほとんどの工業的発酵(英語版)は、バッチまたはフェッドバッチ(流加回分)の工程が用いられているが、さまざまな課題、特に無菌状態を維持する難しさを解決できるなら、連続発酵の方が経済的な場合もある[28]
バッチ型

バッチプロセスでは、すべての原料が一度に組み合わされて、追加の投入なしで反応が進行する。バッチ発酵(batch fermentation)は、何千年もの間、パンやアルコール飲料の製造に使用されており、特にそのプロセスがよく理解されていない場合には、今でも一般的な方法である[29]:1。しかし、バッチとバッチとの間で高圧蒸気で発酵槽を殺菌しなければならないため、費用が高くつくことがある[28]。厳密には、pHを制御したり、泡立ちを抑制するために、しばしば少量の化学物質が添加される[29]:25。

バッチ発酵は、いくつかの段階からなる。細胞が環境に適応する遅滞期(lag phase、ラグフェーズ)があり、その後、指数関数的成長期が続く。多くの栄養素が消費されると増殖は鈍化し、指数関数的ではなくなるが、二次代謝産物(商業的に重要な抗生物質や酵素が含まれる)の生成は加速する。栄養素がほとんど消費された後も、定常期を通じてこの状態が続き、その後に細胞は死滅する[29]:25。
フェッドバッチ型「流加培養」も参照

フェッドバッチ発酵(fed-batch fermentation、流加培養)はバッチ発酵の変形で、発酵中に一部の原料が追加される。これにより、プロセスの段階をより細かく制御できるようになる。特に、非・指数関数的成長期に限定量の栄養素を追加することによって、二次代謝産物の生産量を増加させることができる。フェッドバッチ法は、しばしばバッチ法と併用される[29]:1[30]
オープン型

バッチとバッチの間で、発酵槽の殺菌にかかる高い費用は、汚染に強いさまざまなオープン型発酵法(open fermentation)を使用することで回避できる。一つは、自然に進化した混合培養を使用することである。混合個体群は多種多様な廃棄物に適応できるため、特に廃水処理に適している。好熱性細菌は、微生物汚染を防ぐのに十分な約50 °Cの温度で乳酸を生産することができ、エタノールはその沸点(78 °C)をわずかに下回る70 °Cで生産されるため、抽出が容易である。好塩性細菌は、高塩性条件下でバイオプラスチックを生成することができる。固体発酵は、固体の基質に少量の水を加えるもので、食品産業でフレーバー、酵素、有機酸を生産するために広く利用されている[28]
連続型

連続発酵(continuous fermentation)は、基質が連続的に追加され、最終生成物が連続的に除去される[28]。栄養レベルを一定に保つケモスタット(英語版)(恒成分培養)、細胞量を一定に保つタービドスタット(英語版)(濁度調節型連続培養)、培地がチューブ内を安定的に流れ、細胞が出口から入口へと再利用されるプラグフローリアクター(英語版)(栓流培養)の3種類がある[30]。プロセスがうまく機能すれば、供給物と排出物の安定した流れができ、バッチ処理を繰り返す手間と費用を避けられる。これにより、反応を阻害する副生成物を連続的に除去し、指数関数的成長期を延長することができる。しかし、汚染を回避し、定常状態を維持し続けることは容易でなく、設計も複雑になりやすい[28]。連続型をバッチ型よりも経済的にするには、通常、発酵槽を500時間以上、連続稼働させる必要がある[30]
発酵利用の歴史詳細は「発酵食品」を参照

発酵の、特に酒類への利用は新石器時代から存在し、中国の賈湖(Jiahu)(英語版)では紀元前7000年から6600年頃にかけて[31]、インドでは紀元前5000年、アーユルヴェーダには多くの薬用ワインが言及され、ジョージアでは紀元前6000年[32]古代エジプトでは紀元前3150年[33]バビロンでは紀元前3000年[34]、古代メキシコでは紀元前2000年[34]スーダンでは紀元前1500年の記録がある[35]。発酵食品はユダヤ主義やキリスト教的信仰(英語版) において宗教的な意味を持っている。バルト海の神(英語版)ルグティス(Rugutis)は、発酵を司る神として崇拝されていた[36][37]錬金術では、発酵(「腐敗」)は磨羯宮(まかつきゅう、、??)によって象徴化されていた。研究室でのルイ・パスツール


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:109 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef