発散定理
[Wikipedia|▼Menu]
.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









発散定理(はっさんていり、英語: divergence theorem)は、ベクトル場発散を、その場によって定義される流れの面積分に結び付けるものである。

ガウスの定理(ガウスのていり、英語: Gauss' theorem)とも呼ばれる。
発見

1762年ジョゼフ=ルイ・ラグランジュによって発見され、その後カール・フリードリヒ・ガウス(1813年)、ジョージ・グリーン(1825年)、ミハイル・オストログラツキー(1831年)によって、それぞれ独立に再発見された[1][注 1]。オストログラツキーは、またこの定理に最初の証明を与えた人物でもある。
定理の内容

数式を用いて述べると次のようになる。まず、R3 で定義された滑らかなベクトル場 F = ( F 1 , F 2 , F 3 ) {\displaystyle {\boldsymbol {F}}=(F_{1},F_{2},F_{3})} に対して F の発散 div F を div ⁡ F := ∂ F 1 ∂ x + ∂ F 2 ∂ y + ∂ F 3 ∂ z {\displaystyle \operatorname {div} {\boldsymbol {F}}:={\frac {\partial F_{1}}{\partial x}}+{\frac {\partial F_{2}}{\partial y}}+{\frac {\partial F_{3}}{\partial z}}}

と定義する。発散は∇(ナブラ;nabla)を用いると, div ⁡ F = ∇ ⋅ F {\displaystyle \operatorname {div} {\boldsymbol {F}}={\boldsymbol {\nabla }}\cdot {\boldsymbol {F}}}

と表され,ベクトルの内積(ドット積)となる.

V を R3 において滑らか(ここでは C1 級でよい)な境界 ∂V をもつ有界な領域(= 連結開集合)とし、F を V の閉包で定義されている滑らかなベクトル場とすると、 ∭ V div ⁡ F d x d y d z = ∬ ∂ V F ⋅ n d S {\displaystyle \iiint _{V}\operatorname {div} {\boldsymbol {F}}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z=\iint _{\partial V}{\boldsymbol {F}}\!\cdot \!{\boldsymbol {n}}\,\mathrm {d} S}

が成り立つ。ここで、n は V の外向き単位法ベクトルとする。なお、定理が成り立つためには ∂V が区分的に C1 級であれば十分である。

この定理は div という演算が発散(あるいは湧出量)と呼ばれる所以でもある。右辺はベクトル場が領域 V の表面から流出する量であり、それが左辺の表す領域全体でのベクトル場の発散の値の積分に等しいことを表している。

この定理は、一般的なストークスの定理から導くことができる。
一般化されたストークスの定理との対応

発散定理は、以下のように一般化されたストークスの定理において、2次微分形式のωを考えた場合に相当する。 ∫ ∂ V ω = ∫ V d ω {\displaystyle \int _{\partial V}\omega =\int _{V}\mathrm {d} \omega }

ここでωは ω := F 1 d y ∧ d z + F 2 d z ∧ d x + F 3 d x ∧ d y {\displaystyle \omega :=F_{1}\mathrm {d} y\wedge \mathrm {d} z+F_{2}\mathrm {d} z\wedge \mathrm {d} x+F_{3}\mathrm {d} x\wedge \mathrm {d} y}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:25 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef