生物学
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

1990年には一般的なヒトゲノムを図像化する計画(ヒトゲノム計画)が実行に移され、2003年に完成した[15]
名称

英語の biology はギリシア語の β?ο?(bios、生命)に接尾辞 -λογ?α(-logia、?の学問)である[16]。これは、K.F.ブルダッハ(1800年)、ゴットフリート・ラインホルト・トレフィラヌス(1802年)、ジャン=バティスト・ラマルク(1802年)らによって、それぞれ独立に用いられはじめ[5][17][18]、広まることになった(→#「生物学」と「生命科学」)。
特徴人体:現代の生物学において、ヒトは「万物の長」とはされないが、ヒト研究は重要な位置を占める

現代の生物学者は、基本的に唯物論或いは機械論の立場を取り、生物は有機化合物などの物質から構成された複雑な機械であると見なす。一つ一つの要素を解明していく還元主義が有効である場面は依然存在するが、還元主義だけで複雑な生命現象を理解する試みには限界があることが理解され始めたため、生物を複雑系として扱う考えかたも発展してきている。

生物学では、一般的にヒトを特別なとしては扱わない。しかし、我々自身がヒトであり、その研究は医療産業などと関連しているため、生物学の中でヒト研究は重要であり関心も高い。生物学研究の成果は医療や農業における基礎を提供し、応用面で人類に大きな利益をもたらしている。生物学に関連する産業はバイオ産業と呼ばれ、IT産業と並び発展性のある大きな市場を形成し、経済的にも重要な位置にあるとされる。生物学の知見や技術は生命の根幹に大きく関わるようになり、倫理的・社会的な影響も注目されている。「Portal:生物学」、「生物学に関する記事の一覧」、「Category:生物学」、および「生物学史」も参照
生物学の研究ドイツの植物学者オットー・ヴィルヘルム・トーメによるシダ植物の記載(1885年)

生物学では、他の自然科学分野と同様に、記載実験理論といった科学的方法によって研究が行われる(ここでの「理論」は方法論としての理論を指す)。これらは独立したものではなく、それぞれが関連し合って一連の研究を形作る。

記載とは、詳細な観察に基づいて基礎となる事象を明らかにすることであり、研究において最も始めに行われる。生物種同定するための形態学的観察をはじめとして、実験操作を加えない状態での発生現象や細胞構造の観察、生理条件下での生理活性物質の測定、ひいてはゲノムの解読も記載と言える。

また、個々の事例の記載を基礎とし、それらを比較することからより一般的な知見を得ることは、特に生物学では重視されてきた。これは一つにはその構造や現象が複雑で,研究史の初期において実験系を作りにくかったこと、他方で生物が多様であり、その背後に進化があることからそれを比較によってあぶり出すことに大きな意味があったからである。たとえば比較解剖学比較発生学はそれぞれの分野の発展の中では大きな意味を持ち、それらは直接に進化論の発展に結びついた。

実験は人為的に操作を加えることにより通常と異なる条件を作り出し、その後の変化を観察・観測することで、生物に備わっている機構を解明しようとする実証主義的な試みである。突然変異の誘発や、遺伝子導入、移植実験などさまざまな手法を使う。現代生物学は実験生物学の性質が強くなっている。実験操作は科学的方法に基づき、対照実験再現性の確認などにより、実験者の主観が除かれる必要がある。三葉虫化石: 化石は生物進化を探る手がかりである

一方、進化生物圏レベルの生態学研究のように実験による証明が困難である場合は、様々な観測データや古生物化石などを用い、比較や構造化など理論による説明を試みる。またバイオインフォマティクスのように膨大なデータを統合して理解しようとする場合も、理論によるアプローチに重点が置かれる。実験を行う前に仮説を立て結果を予想したり、実験結果を解釈して抽象化や普遍化させて法則や規則性を見いだしたりすることも理論の一部である。このような理論面に重点を置いた分野を理論生物学数理モデルを用いる分野を数理生物学とよぶ。これらの分野は高度に抽象化するため、対象の生物学的階層には捕われない性質がある。

新たな方法論として、蓄積したデータに基づいてコンピュータ上に仮想システムを構築することで構造を理解したり、そのパラメータを変化させるシミュレーションにより実験の代わりとするシステム生物学も登場している。
還元主義と複雑系共生関係にあるクマノミイソギンチャク: 生物と環境が作り出す生態系は複雑である

20世紀半ばの分子生物学の台頭以降、その周辺分野では、一つの遺伝子タンパク質の機能に注目する還元主義的なアプローチが主体だった。この手法は強力で、さまざまな生命現象を解き明かしてきた。しかし、分子レベルで明らかにしたことを組み合わせるだけでは、脳の活動や行動など複雑な現象は理解しがたく、還元主義のみでは限界があることもわかってきた。このことへの反省もあり、物理学的還元主義への傾倒から抜け出し、21世紀に入ってからは生物を複雑な系としてそのままあつかうオーミクスシステム生物学等のアプローチも盛んになっている。一方、生物多様性をあつかう伝統的な生物学や生態学では、生物の作りだす系が複雑であることは自明だったため、複雑系のような全体論は目新しいものではない。生物学の両輪である、生物の多様性と普遍性に関する知見は、ゲノム解析によって結びつけられつつある。
大きなパラダイムシフト

生物学のパラダイムを大きく変えたものには細胞の発見、進化の提唱、遺伝子の示唆、DNA の構造決定セントラルドグマの否定、ゲノムプロジェクトの実現などがある。細胞の発見やゲノムプロジェクトは主に技術の進歩によってもたらされ、進化や遺伝子の発見は個人の深い洞察によるところが大きい。ボツリヌス菌: 顕微鏡は、微生物や細胞を見る「目」となった

17世紀に発明された顕微鏡による細胞の発見は、微生物の発見をはじめとして、動物植物がいずれも同じ構造単位から成っていることを認識させ、動物学植物学の上位分野として生物学を誕生させることになった。また自然発生説の否定によって、いかなる細胞も既存の細胞から生じることが示され、生命の起源という現在も未解明の大きな問題の提示につながっている。

進化はチャールズ・ダーウィンをはじめとする数人の博物学者によって19世紀に提唱された概念である。それまでは経験的にも宗教的にも、生物種は固定したものとされていたが、現在では、同じ種の中でも形質に多様性があり、生物の形質は変化するものとされ、種の区別が困難なものもあるという指摘がされている。単純な生物から多様化することで現在のような多様な生物が存在すると考えることが可能になり、生命の起源を研究可能なテーマとすることができるようになった。進化論は社会や思想にも大きな影響を与え、近代で最も大きなパラダイムシフトの1つであった。複製されるDNA: 二重らせんがほどけて複製されることは、遺伝の最も根源にある物理的現象である

遺伝自体は古くから経験的に知られていた現象である。しかし、19世紀後半、メンデルは交雑実験から遺伝の法則を発見し、世代を経た後にも分離可能な因子、すなわち遺伝子が存在することを証明した。さらに染色体が発見され、20世紀前半の遺伝学・細胞学による研究から、染色体が遺伝子の担体であることが確証づけられた。この過程において古典的な遺伝学が発展し、その後の分子生物学の誕生にもつながった。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:94 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef