生殖
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

2004年には、刷り込み(インプリンティング)に関与するいくつかの遺伝子の機能を変更することによって、日本人科学者は2匹のマウスの卵子を組み合わせて娘マウスを作成し[19]、また2018年には、中国の科学者が2匹の雌マウスの母親から29匹の雌マウスを作成したが、2匹の父親マウスから生存可能な子孫を作り出すことはできなかった。研究者は、これらの技術が近い将来ヒトに応用される可能性はほとんどないと指摘している[20][21]
戦略詳細は「生殖の様式(英語版)」および「生活史理論(英語版)」を参照

生物種によって生殖戦略はさまざまである。ヒトシロカツオドリのように、生まれてから何年も性成熟に至らず、それでもほとんど子孫を残さない動物もいる。また、繁殖が早い動物もいるが、通常の状況下でほとんどの子孫は、成体になるまで生き残れない。たとえば、ウサギ(8ヵ月後に成熟)は年間10-30匹の子孫を残し、ショウジョウバエ(10-14日後に成熟)は1年間に最大900匹の子孫を残すことができる。これら2つの主な戦略はそれぞれ、K-選択(少数の子孫)と、r-選択(多数の子孫)として知られている。どちらの戦略が進化にとって有利かは、さまざまな状況によって異なる。子孫が少ない動物は、個々の子孫の育成と保護により多くの資源を割くことができるため、多くの子孫を残す必要性を減らすことができる。一方、子孫の多い動物は、個々の子孫に割く資源が減ってしまう。この種の動物では、多くの子孫が出生後すぐに死んでしまうのが普通だが、通常は個体群を維持するのに十分な数の個体が生き残る。ミツバチやショウジョウバエなどの一部の生物は、精子貯蔵(英語版)と呼ばれる仕組みで精子を保持し、それによって受精能力の期間を長くする。
その他の戦略詳細は「一回繁殖と多数回繁殖(英語版)」を参照

周年繁殖動物(: polycyclic animals)は生涯を通じて断続的に繁殖する。

一回繁殖生物(: semelparous organisms)は一生に一度だけ生殖する[22]。たとえば、一年草(すべての穀物作物を含む)、サケ、クモ、竹、センチュリー・プラントなどがある[23]。多くの場合、これらは生殖後まもなく死亡する。これはしばしばr-戦略と関連している。

多回繁殖生物(: iteroparous organisms、多数回繁殖生物とも)は、多年生植物などのように、連続的な周期(たとえば1年または季節)で子孫を残す。多回繁殖型の動物はいくつかの季節(または周期的な状態の変化)にわたって生存する。これはK-戦略との関連が強い。

無性生殖と有性生殖有性生殖における「二重の代償」の模式図。各世代が同じ数 (2個) の子孫を残すとすると、(a) 有性生殖は各世代で個体群の数は変わらないが、(b) 無性生殖の個体群は世代ごとに2倍になる。

無性生殖をする生物は、指数関数的にその数を増やす傾向がある。しかし、DNAの変異を突然変異に頼っているため、その種のすべてのメンバーが同じような脆弱性を抱えている。有性生殖をする生物は子孫の数は少ないが、遺伝子の変異が大きいため病気にはかかりにくいと考えられる。

多くの生物は無性生殖も有性生殖もできる。アブラムシ粘菌イソギンチャクヒトデのいくつかの種(断片化(英語版)によって)、多くの植物がその例である。環境要因が良好な場合、無性生殖は、豊富な食物供給、適切な避難場所、好ましい気候、病気、最適なpH、あるいはその他の生活様式の要件の適切な組み合わせなど、生存に適した条件を利用するために採用される。これらの生物の個体数は、豊富な資源を最大限に利用するために、無性生殖戦略によって指数関数的に増加する[24]

一方、食料源が枯渇したり、気候が悪化したり、あるいは生活環境が不利に変化して個体の生存が危うくなると、これらの生物は有性生殖の形態に切り替える。有性生殖は、種の遺伝子給源の混合を確実にする。有性生殖の子孫に見られる変異により、生存により適した個体の出現を可能とし、選択的適応が起こる機構が提供される。また、生殖周期の減数分裂の段階では、DNA損傷を特に効果的に修復することができる(減数分裂を参照)[24]。さらに、有性生殖は通常、無性親(むせいしん)の子孫を脅かす条件に耐えることができる生活環の形成をもたらす。したがって、種子、胞子、卵、蛹(さなぎ)、包嚢(ほうのう)、あるいは有性生殖の他の「越冬」段階は、不利な状況下での生存を保証し、生物は適性への回復が起こるまで不利な状況を「待つ」ことができる。
生殖のない生命

生殖のない生命の存在については、いくつかの推測の対象になっている。生命起源論: abiogenesis)は、生命の起源がどのようにして、繁殖しない要素から繁殖する生物を作り出したかについて研究する生物学の一分野である。いくつかの独立した自然現象があったかどうかにかかわらず、生物学者は、地球上の現存するすべての生命にとっての最後の普遍的な共通祖先(英語版)(LUCA)が約35億年前(英語版)に生きていたと考えている[25]

科学者たちは実験室で、非生殖的に生命を創造する可能性について考えてきた。何人かの科学者は、完全に非生物的な物質から単純なウイルスを作り出すことに成功している[26]。しかし、ウイルスはしばしば生物ではないと見なされている。ウイルスは、タンパク質のカプセルに入ったRNAやDNAの断片に過ぎず、代謝がないため、乗っ取った細胞の代謝機構の助けを借りてのみ複製することができる。

祖先を持たない真に生きた生物(たとえば、単純な細菌)を作り出すことは、はるかに複雑な作業となるであろうが、現在の生物学的知識によれば、ある程度は可能性があるかもしれない。合成ゲノム(英語版)を既存の細菌に導入し、天然のDNAと置き換えることで、新しい微生物マイコプラズマ・ミコイデス(Mycoplasma mycoides)が人工的に作成された[27]

科学界では、化学的に合成されたゲノムが自然界に存在するゲノムのほぼ1対1の複製であり、受容細胞は自然界に存在する細菌であったという理由で、この細胞が完全に合成されたものと言えるかどうかに関して議論がある[28]。クレイグ・ヴェンター研究所は「合成細菌細胞」という用語はそのままに、『...我々はこれを「ゼロからの生命の創造」とは考えておらず、むしろ、合成DNAを使用して、すでに存在する生命から新しい生命を創造している』と明言している[29]ヴェンターは、この実験細胞について特許を取得する予定であり、「これは明らかに人間の発明である」と述べている[28]。彼らは「合成生命体」の構築は、研究者が生命を引き裂くのではなく、構築によって生命について学ぶことができると提案している。彼らはまた、「真にプログラム可能な生物」を作り出すために、生命と機械の境界を広げ重ねることを提案している[30]。研究者たちは、「真の合成生化学の生命体」の創造は、現在の技術で到達できる範囲にあり、人類を月に送るのに必要な努力に比べれば安価であるとも述べている[31]
富くじの法則

有性生殖には多くの欠点があり、無性生殖よりもはるかに多くのエネルギーを必要とし、生物を他の活動からそらすことになるのに、なぜこれほど多くの種が有性生殖をするのかについて議論されている。ジョージ・C・ウィリアムズは、有性生殖の普及を説明する際に、富くじ例えを使用した[32]。彼は、子孫に遺伝的な多様性をほとんど、あるいはまったくもたらさない無性生殖は、同じ番号の富くじを何枚も買うようなもので、「当たり」、つまり生き残る子孫を残す可能性は限られていると主張した。一方、有性生殖は、より少ない富くじを買うようなものだが、より多様な数字があり、成功する可能性は高くなるとした。この例えの論点は、無性生殖では遺伝的変異(英語版)が生じないので、環境の変化に素早く適応する能力はほとんどないということである。今日、不安定な環境では無性生殖がより一般的であるという証拠があることから、富くじの法則はあまり受け入れられていない[33]
参照項目

季節繁殖動物
(英語版) - 1年のうち特定の時期にのみ生殖を成功させる動物種

マストシーディング(英語版) - 樹木や低木の集団による非常に変動性の高い果実の年間生産量

交配様式(英語版) - ある集団が性的行動に関連して構成される方法

生殖様式(英語版) - 動物が子孫を生み出す様式(卵生、胎生、卵胎生)

植物の生殖 - 植物が新しい子孫を残す過程

生殖器系 - 有性生殖に関わるすべての解剖学的器官から構成される生物学的システム

脚注[脚注の使い方]^ Ridley M (2004) Evolution, 3rd edition. Blackwell Publishing, p. 314.
^ John Maynard Smith The Evolution of Sex 1978.
^ Reptiles & Amphibians. Torstar Books. (1986). p. 101. .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}ISBN 978-0-920269-81-7 


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:52 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef