球面
[Wikipedia|▼Menu]
あるいはまた、球面座標系における球面の面積要素 dA ? r2sin(θ)⋅dθ⋅dφ の積分としても導出できる。
幾何学的性質

球面は同一平面上にない四点を指定すれば一意に決定される。より一般に、通る点や平面に接するなどの条件が四つあれば球面が一意に決まる[8]。この性質は、平面上の円が同一直線上にない三点で一意に決まるという性質の三次元空間版と見ることができる。その帰結として、球面は一つの円とその円が属する平面上にない一点によって(それらすべてを通るという意味で)一意に決定できる。

ふたつの球面の方程式の共通解を調べれば、ふたつの球面の交線が円となることが確認できる。その交円を含む平面は交わる球面の根面 (radical plane) という[9]。根面は実平面だけれども、交円は虚円(二つの球面が共通実点を持たない)や点円(二つの球面が一点で接する)となることもあり得る[10]

交円上の実点における二つの球面の間の成す角とは、その点における各球面の接平面によって定義される二面角を言う。二つの球面は、その交円上のどの点でも同じ角度で交わる[11]。ふたつの球面が直角に交わるための必要十分条件は、それら球面の中心間の距離の平方がそれらの半径の平方和に等しいことである[2]
球束「直線束 (射影幾何学)」および「円束 (射影幾何学)」も参照

相異なる二つの球面の方程式 f(x, y, z) = 0 および g(x, y, z) = 0 に対して s f ( x , y , z ) + t g ( x , y , z ) = 0 {\displaystyle sf(x,y,z)+tg(x,y,z)=0} は、助変数 s, t の任意の値に対して、やはり球面の方程式を与える。適当な t, s に対してこの方程式を満足する球面すべてからなるを、もとのふたつの球面(生成球面)から定まる球または球面束 (pencil of spheres) と呼ぶ。ただし、この定義において「球面」には平面(無限遠点中心、半径無限大)の場合も許すものとする。生成球面が両方とも平面である場合には、球面束を成すすべての球面が平面となるか、さもなくば球面束はただ一つの平面(生成球面の根面)のみからなる[2]

球面束がすべて平面からなるのでないならば、それを以下の三種に分類することができる[10]:

生成球面の交円が実円 C ならば、球面束は C を含む球面(根面も含めて)全体の成す族になる。球面束に属する通常の球面(平面でないという意味)の中心の軌跡(中心直線)は C の中心を通り根面に直交する直線上にある。

生成球面の交円が虚円ならば、球面束に属する球面はこの虚円を通るが、通所の球面としてはそれらは交わらない(共通実点はない)。属する球面の中心直線は根面(これは虚円を含む平面で球面束に属す)に直交する。

生成球面の交円が点円 A ならば、束に属する球面は全て点 A において接し、根面は束に属するすべての球面の共通接平面である。中心直線は A において根面と直交する。

根面上の固定された点から束に属する任意の球面に引いた接線の長さは、球面に依らず同じになる[10]

根面は、束に属する球面すべてに直交する任意の球面の中心が描く軌跡に等しい。もっと言えば、球面束に属する球面の任意のふたつに直交する球面は、束に属するすべての球面と直交し、かつ中心が束の根面上にある[10]
用語法

球の中心を通る直線上にある球面上の点の対(その直線と球面とのふたつの交点)は対蹠点(英語版) (antipodal points) と呼ばれる。球と中心および半径を共有する球面上の円は大円と言い、大円により球面は二つの合同な図形に分けられる。球面の平面切断(英語版)は「球面切断」(球面断面)という。球面切断はすべて円であり、そのうちで大円でないものは小円(英語版)と呼ばれる[12]

二つの相異なる非対蹠点の間の球面に沿った最短距離とは、それら二点を結ぶただ一つの大円がその二点で切り取られる二つの弧のうちの小さいほう(精確には大きくないほう)の長さである。この「大円距離」を備えた球面上で大円はリーマン円(英語版)となる。

球面上の特定の点を任意に選んで「北極」とするとき、その対蹠点を「南極」と呼んで、両極点から等距離にある大円を赤道とする。二つの極点を結ぶ大円は子午線または経線と呼び、球の内部を通って両極を結ぶ直線を自転軸と呼ぶ。赤道と平行となる球面上の円は緯線である。このような語法は、近似的に楕円体である(地球のような)惑星に対しても用いられるものである(ジオイドも参照)。
半球面

球面の中心を含む任意の平面は、球面をふたつの合同な半球面 (hemisphere) に分割する。球面の中心を通り交わる任意のふたつの平面は、四つの球面楔形(英語版)または球面二角形に細分割する(これら図形の頂点は、平面の交線上にある対蹠点(英語版)に一致する)。

球面の対蹠点を同一視するは実射影平面(英語版)と呼ばれる曲面で、これを赤道にある対蹠点を同一視した北半球と見ることもできる。

@media screen{.mw-parser-output .fix-domain{border-bottom:dashed 1px}}この半球面はリーマン円(英語版)によって最適(面積最小)等長充填となると予想(英語版)されている。[訳語疑問点]
一般化
任意次元詳細は「超球面」および「超球の体積」を参照

球面の概念を、任意の次元に対して一般化することができる。自然数 n に対して「n-次元(ユークリッド)球面」("n-sphere") をしばしば Sn と書いて、中心となる定点から半径となる決まった距離 r の位置にある (n + 1)-次元ユークリッド空間内の点からなる軌跡として定義できる。特に

零次元球面 S0 は実数直線内の閉区間 [?r, r] の両端点である。

一次元球面 S1 は半径 r の円周である。

二次元球面 S2 は通常の球面

三次元球面 S3 は四次元ユークリッド空間内の超球面を表す

n > 2 のとき、超球面ともいう[注釈 2]。文献によっては余次元(英語版)が 1 のときに限って超球面と呼ぶ[注釈 3]場合も稀にあるので文脈に注意すべきである。

Sn は、特に「単位球面」(原点を中心とする単位半径の球面)を表すために用いられることもある。

(n − 1)-次元単位超球面の表面積は、ガンマ函数 Γ(z) を用いて 2 π n / 2 Γ ( n / 2 ) {\displaystyle {\frac {2\pi ^{n/2}}{\Gamma (n/2)}}} で与えられる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:48 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef