熱力学ポテンシャル
[Wikipedia|▼Menu]
熱の理論(英語版)


Vis viva(英語版)

熱の仕事当量

動力

重要文献


摩擦により発生する熱の源に関する実験的探求(英語版)

不均一な物質系の平衡に就いて

熱の動力についての考察(英語版)

年表


熱力学

熱機関(英語版)



芸術

教育



マクスウェルの熱力学的表面(英語版)

エネルギー拡散としてのエントロピー(英語版)


科学者

ベルヌーイ

ボルツマン

カルノー

クラペイロン

クラウジウス

カラテオドリ

デュエム

ギブズ

フォン・ヘルムホルツ

ジュール

マクスウェル

フォン・マイヤー

オンサーガー

ランキン

スミートン

シュタール

トンプソン

トムソン

ファン・デル・ワールス

ウォーターストン

.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









統計力学



熱力学 · 気体分子運動論

粒子統計
マクスウェル=ボルツマン

ボース=アインシュタイン
フェルミ=ディラック
パラ · エニオン · 組み紐(英語版)

アンサンブル
ミクロカノニカルアンサンブル

カノニカルアンサンブル
グランドカノニカルアンサンブル
等温定圧アンサンブル
等エンタルピー-定圧

熱力学
気体の法則(英語版) · カルノーサイクル

デュロン=プティの法則

模型
デバイ · アインシュタイン · イジング

熱力学ポテンシャル
内部エネルギー
エンタルピー
ヘルムホルツの自由エネルギー
ギブズの自由エネルギー
グランドポテンシャル

科学者
マクスウェル · ギブズ · ボルツマン · アインシュタイン · オンサーガー · ウィルソン · 久保亮五 · カダノフ · フィッシャー · 川崎恭治 · パリージ · エドワーズ · ローレンツ · 蔵本由紀 · ジャルジンスキー











熱力学ポテンシャル(ねつりきがくポテンシャル、英語: thermodynamic potential)とは、熱力学において、系の平衡状態における熱力学的性質の情報を全て持つ示量性状態量である。完全な熱力学関数とも呼ばれる[1]

ウィラード・ギブズは基本的な方程式 (fundamental equations)と呼んでいた[2]
概要

「熱力学的性質の情報を全て持つ」とは全ての状態量がこの関数から(偏微分等の組み合わせにより)与えられるという意味である。言い換えれば、完全な熱力学関数が与えられればそこから状態方程式や熱容量などの系の性質が決まる[3]。熱力学からは関数形に制約(凸性など)を与えるが、具体的な関数形は実験的に決められるか、統計力学から導出するなど、熱力学以外から与えられる[4]

熱力学ポテンシャルの一つである内部エネルギー U は、エントロピー S、体積 V、各成分の物質量 N = {Ni}、あるいはその他の示量性状態量[注釈 1] X を変数に持つ関数 U(S, N, V, X) として表されたときに完全な熱力学関数となる。このことはエネルギー表示と呼ばれることがある[5]。このとき、各変数による偏微分は

( ∂ U ∂ S ) V , N , X = T ( S , V , N , X ) , ( ∂ U ∂ V ) S , N , X = − p ( S , V , N , X ) , ( ∂ U ∂ N i ) S , V , X = μ i ( S , V , N , X ) , ( ∂ U ∂ X ) S , V , N = x ( S , V , N , X ) {\displaystyle {\begin{aligned}\left({\frac {\partial U}{\partial S}}\right)_{V,N,X}&=T(S,V,N,X),\\\left({\frac {\partial U}{\partial V}}\right)_{S,N,X}&=-p(S,V,N,X),\\\left({\frac {\partial U}{\partial N_{i}}}\right)_{S,V,X}&=\mu _{i}(S,V,N,X),\\\left({\frac {\partial U}{\partial X}}\right)_{S,V,N}&=x(S,V,N,X)\end{aligned}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:68 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef