氷河時代
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

それとは逆に、温暖な大気が海洋を温めることで、海水中に吸収される二酸化炭素の吸収効率が大幅に下がって地球温暖化を強化することになり、新しい氷河時代の開始を阻止する可能性がある[65]
大陸の配置

地質学的記録は、氷河時代は赤道から両極へと向かう暖流を止めるか減少させる位置に大陸があるときに始まり、それゆえに氷床が形成されることを示しているようである。氷床は地球のアルベドを増大させ、それによって太陽放射の吸収を抑える。吸収される太陽放射が少ないと大気は冷える。冷えることで氷床が成長し、さらに反射能を増大させて正のフィードバック循環に入る。氷河時代は風化が減少して温室効果ガスが増加するまで続く。

赤道から両極へと向かう暖かい海水の流れを止めるか減少させるような位置を取る大陸として知られているものは3つある:[要出典]

極地に居座る大陸(例:今日の南極大陸

ほぼ陸地に囲まれている極地の海(例:今日の北極海

赤道のほとんどを覆う超大陸(例:クライオジェニアン期のロディニア大陸

今日の地球には南極を覆う大陸があり、北極の海がほぼ陸地に囲まれているので、地質学者は、地質学的に近い将来、地球は再び氷期を経験することになるだろうと信じている。

ヒマラヤ山脈は現在の氷河時代の主な要因であると信じている科学者もおり、その理由は、ヒマラヤの山々が地球の総雨量を増加させていることで、大気中の二酸化炭素が洗い流され、その温室効果を減少させているというものである[60]。ヒマラヤ山脈の形成はインド・オーストラリアプレートユーラシアプレートと衝突した約7000万年前に始まった。インド・オーストラリアプレートは今も年に67 mmずつ北上しているため、ヒマラヤ山脈は年に5 mm程度のペースで隆起を続けている。ヒマラヤ山脈の歴史は4000万年前の始新世中期以来の地球の平均気温の長期的な低下とだいたい一致する。
海流の変動

古気候レジームの一因となるもう一つの重要な要因は海流の変動で、海流は大陸の位置、海水準及び塩分濃度、その他の要因によって変動する。海流には気候を冷却する能力(例:南極氷床の形成を促進する)と加熱する能力(例:冷帯気候とは対照的にブリテン諸島を暖める)がある。およそ300万年前のパナマ地峡の閉塞により、熱帯の大西洋と太平洋の間の海水の交流・交換が止まり、現在の北アメリカを覆う強い氷河作用の時代の到来を告げることとなった[66]

海流の変動によって最近の氷期振動をうまく説明できると示唆する分析結果もある。最終氷期の間、主として北半球の氷床では、海水準は20?30 m変動し、海水が隔離された。氷が集まり、海水準が十分に下がると、ベーリング海峡[注釈 6]を通る流量は減少し、北大西洋からの流量が増大する結果となった。これは大西洋の熱塩循環を再編成し、北極地方への熱輸送量を増加させ、極地に蓄積された氷を融解して他の大陸氷床を減少させた。これによる海水の放出によって海水準は再び上昇し、北半球の氷床の蓄積に付随して、太平洋からの冷たい海水の進入が取り戻された[67]
チベット高原の隆起

ドイツの地理学者マティアス・クーレ(英語版)の氷河時代の発達に関する地質学的理論は、氷河時代(最終氷期最盛期)中のチベット高原を覆う氷床の存在によって示されていた。クーレによると、プレートテクトニクスにより隆起して雪線を越えたチベットは、約240万km2の表面が裸地から70%を超えるアルベドを有する氷の高原へと変化した。宇宙へのエネルギーの反射は地球寒冷化の原因となり、更新世の氷河時代の引き金となった。チベット高原は亜熱帯の緯度に位置しているため、高緯度地域の4倍から5倍ほどの日射量がある。地球上で最も強い加熱面だったであろう表面が冷却面に変わったといえる。

クーレは地球の軌道の変化による10万年単位の放射サイクルの変化によって間氷期を説明する。この比較的軽微な温暖化は、上積氷の荷重による北欧の内陸の氷域とチベットの高度の低下と相まって、度々内陸の氷域の氷を完全に解かした[68][69][70][71]
地球の軌道の変化

ミランコビッチ・サイクルは、太陽の周りを公転する地球の軌道にみられる特徴で、公転軌道や自転軸の一連の周期的な変化を指す[12]。それらの変化は日射量を変化させるが、各サイクルは異なる長さを持つため、ある時はそれらは互いに効果を強め合い、またある時は(部分的に)相殺され、日射量の変化は複雑な曲線で表示される[72]夏至点の北緯65度における1日あたりの大気上端の平均日射量の変化

ミランコビッチ・サイクルが氷河時代の中で氷期と間氷期の発生に影響を及ぼすことには有力な証拠がある。現在の氷河時代は、特に最近40万年間については、詳しく研究され、最もよく理解されているが、それは大気組成及び温度指標と氷体積を記録している氷床コアの対象とする期間だからである。この期間内において、ミランコビッチの軌道強制力の期間と氷期/間氷期の振動数の一致が非常に近いので、軌道強制力は一般的に受け入れられている。太陽からの距離の変化(軌道離心率)、地軸歳差運動、及び地軸の傾き(軌道傾斜角)の変化が複合して、地球が受ける日射量が変化している[73]。特に重要なのは地軸の傾きの変化で、季節ごとの気候の激しさに強い影響を与える。たとえば、7月の北緯65度での太陽放射フラックスの量は22%ほどの割合(450 W/m2から550 W/m2)で変動する。夏があまりに涼しくなると、前の冬に積もった雪を全て解かすことができなくなるため、氷床が発達することは広く信じられている。軌道強制力は弱すぎるので氷河の形成の引き金になることはないと信じる者もいるが、CO2のようなフィードバックの仕組みでこの不一致を説明できるかもしれない。

ミランコビッチ強制力が地球の軌道要素の周期的変化は氷河の記録で表現できると予測する一方で、氷期?間氷期のタイミングにおいてどの周期が最も重要だと認められるかを説明するためには追加の説明が必要である。特に、過去80万年の間、氷期?間氷期振動の卓越周期は10万年であり、それは地球の軌道離心率軌道傾斜角変化に合致する。けれども、これはミランコビッチが予測した3つの振動数の中では最も弱い。300万年前から80万年前までの間は、優勢な氷河形成のパターンは41,000年という地球の赤道傾斜角(自転軸傾斜角)の変化に合致する。ある振動数が他の振動数に対して優勢であることの理由はあまり理解されておらず、現在研究の活発な分野であるが、その答えはおそらく地球の気候系における何らかの共鳴の形と関係するだろうと考えられている。最近の研究成果は、増加した南極の海氷による10万年周期の優勢が全体の日射反射率を増大させていることが原因であると示唆している[74][75]

従来のミランコビッチの説では、10万年周期の支配的な時期が過去8回あったことの説明が難しい。アメリカの物理学者の Richard A. Muller や Gordon J. F. MacDonald[76][77][78] らは、それは地球の軌道の計算が2次元的な手法に基づいているからであり、3次元的な解析を行えば、軌道傾斜角にも10万年周期が現れると指摘している。彼らは、太陽系のダストバンドと地球の軌道との交差が影響している可能性を提示しながら、これらの軌道傾斜角の変化が日射量の変化を導いているのだと述べている。これらは従来提唱されてきたメカニズムとは異なるものだが、計算結果は「予言されていた」最近40万年間について得られているデータとほぼ同じ結果を示している。この Muller と MacDonald の理論に対しては、気候学者の Jose Antonio Rial から反論されている[79]

古気候学者のウィリアム・ラディマン(英語版)は、10万年周期をもっともらしく説明するモデルとして、歳差運動(26,000年周期)に対する離心率の変調効果(弱い10万年周期)が、41,000年周期と26,000年周期で起こる温室効果ガスのフィードバック効果と結びついたという説明をしている。けれども、Peter Huybers が提案した別の理論では、41,000年周期は常に優勢なのであるが、地球は現在、2番目か3番目の周期だけでも氷河時代の引き金となり得る気候モードに入っているのだと主張している。これは10万年の周期性が実は8万年と12万年の周期が平均されたことによって作り出された錯覚ではないかと暗に示している[80]。この理論は、Didier Paillard によって提唱された、単純な実験に基づく多状態モデルと一致している[81]。Paillard は、更新世後期の氷期のサイクルは3つの準安定的な気候の状態の間の飛躍としてみることができると説明している。それらの飛躍が軌道強制力に誘発されたのに対し、更新世前期には41,000年周期の氷期はたった2つの気候状態の間の飛躍から結果として生じたとしている。この振る舞いを説明する力学モデルは Peter Ditlevsen によって提唱された[82]。これは、更新世後期の氷期の周期は離心率の「弱い10万年周期」が原因ではなく、主として41,000年の自転軸傾斜角の周期に対する非線形の応答であるとする説に裏付けられるものである。
地球磁場の変動

また、地球磁場の変動と気候変化の相関性が指摘されている[83][84][85][86]地磁気が弱まることにより、それまではローレンツ力によって弾かれていた宇宙線の大気圏内への入射量が増え、粒子の飛跡が電離して、それを核として大気圏内の過冷却水蒸気が凝結しての形成が増加し、加速度的に寒冷化すると考えられる[83][84]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:161 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef