核磁気共鳴画像法
[Wikipedia|▼Menu]
その後、左右大脳半球の活動の違いを検出した[20]

医療現場に利用され始めた当初は、核磁気共鳴(NMR)現象を利用したCT(: computer tomography、コンピュータ断層撮影)であったので、NMR-CTと言った。日本語での呼称として当初は核磁気共鳴CT検査と言っていたが、病院内で「核」という文字を使用することに抵抗があり、またMRIには放射線被曝がないという利点を誤解されかねないという懸念があり、MR-CTという呼称が考えられ、最終的には、MRIという呼称に落ちついた。日本では、東芝が国産常電導機MRI-15A(0.15T)を東芝中央病院(後の東芝病院)に設置した。また島津(SMT-20)、旭化成(MARK-J)、日立(G-10)、三洋(SNR-500)などもつぎつぎ開発され、国内外で激しく競い合う状況となる。1982年に中津川市民病院に日本国内の病院として最初に診療用に永久磁石式のFONAR QED 80-αが導入された[21][22][23]。1983年に入ると、放射線医学総合研究所に常伝導垂直型MARK-J(0.15T)が導入され、同型機が藤元病院(現藤元総合病院)に設置された。さらに、国立大学一号機としてブルッカー社製常電導機BNT-1000J(0.15T)が東北大学抗酸菌研究所に導入された。同年5月に東京慈恵会医科大学附属病院に厚生省から認可を受けた東芝の商用機の1号機が設置された[24]

現在[いつ?]、超伝導電磁石を使用し強磁場を発生させることで、画像を精細かつ高コントラストで構成できるものが製品化されている。多くの施設では0.5テスラから1.5テスラの超伝導電磁石を用いたMRIが使われているが、最近[いつ?]では3テスラの超高磁場装置が日本国内でも臨床使用が認められるようになり、大規模病院を中心に普及が始まりつつある(2007年末において約100台稼働の見通し)。研究用としては、理化学研究所バリアン製の4.0テスラの装置、国立環境研究所にバリアン製の4.7テスラの装置、新潟大学脳研究所や自然科学研究機構 生理学研究所に、人体を撮像可能なゼネラル・エレクトリック製の7テスラの装置が設置されている。

主に永久磁石を使用するオープン型MRIは、冷凍機の運転やヘリウム補充が不要などランニングコストが低いため[25]、中小規模の医療機関に広く普及している。低磁場なので騒音が少なく、漏洩磁場も少ないメリットのほか、ガントリ開口径が広いので心理的な圧迫感が少なく、外部からのアプローチも容易である。この特徴を生かし、小児や閉所恐怖症患者の検査、腰椎椎間板ヘルニアに対するレーザー治療などの術中(インターベンショナル)MRIに用いられる。

また現在[いつ?]では、リウマチやスポーツ整形等に特化した、エム・アール・テクノロジー社製[26]エサオテ社製のコンパクト型四肢専用MRIが、日本でも販売されている。この装置は四肢撮像を対象としており、小型で、検査室の磁気シールド工事は不要である。また、閉所恐怖症や、身体の不自由な患者、他にもペースメーカー装着者など従来MRI検査が禁忌であった患者に対しても撮像が安全に施行できる可能性がある(5ガウスラインが28cm(radial)程度なため)。CTと組み合わせた「CT-MRI」や、PET(陽電子放射断層撮影)装置と組み合わせた「PET-MR」もある。

従来は数千万円する機器だったため応用範囲が限定されていたが、近年、新たな試みとしてソフトウェア無線の技術を取り入れることにより信号処理関連のオープンソース化が進みつつあり、従来であれば高額のため利用を躊躇するような分野への応用も可能になりつつある[27][28]
画質

基本的に濃淡を持つ白黒画像に処理・出力される。

体内の詳細を見ることができるものという一般的な概念が強いが、通常の撮影方法では256×256ピクセルであり、デジタルカメラの画素数に換算するとおよそ6.6万画素にすぎない。最近では512×512ピクセルの画像(約26万画素)を撮影できるものが普及しつつあり、1024×1024ピクセル(約105万画素)や、2048×2048ピクセル(約420万画素)の機種も出現している。

なお、MRIの本領は三次元画像にあり、さらに時間的変化まで捉えた画像も撮られているので、MRI検査におけるデータ量は、処理のためにより高性能のコンピュータの使用を要求しつつある。

コンピュータの処理能力が向上した2000年代以降は、各組織の透過率をコントロールし、内部を可視化するボリュームレンダリングも用いられるようになった。
利点・欠点
利点

X線などの
電離性放射線を使用しないため放射線被曝はない。

生体を構成する組織の種類による、画像のコントラストが、CTよりも高い。

造影剤を用いなくとも血管画像が撮影できる(MRアンギオグラフィー)。

骨によるアーチファクトが少ない。そのため骨で囲まれたトルコ鞍や脳底の病変はCTよりもMRIが描出に優れる。

軟骨靭帯は一般的にX線CTで評価できないため、腰椎椎間板ヘルニア靭帯損傷肉離れ、骨軟部腫瘍半月板損傷など、骨以外の運動器の異常の評価に有用である。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:83 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef