暗視装置
[Wikipedia|▼Menu]
月の光を増幅して視界を得ることから微光暗視装置(英語: Starlight scope)と通称されており、ベトナム戦争から実戦投入が始まった。第0世代(=アクティブ近赤外線式)と違って赤外線投光機が不要であるので、被発見性が著しく低減された一方、構造物や洞窟の中など完全な暗闇では使用できず、気象に左右されるという欠点がある。

性能と特性に応じて、下記のように世代区分される。
第1世代
ダイノード型光電子増倍管による可視光増幅方式を採用しており、分光感度特性はS-20型、光増幅率は1,000倍程度であるため、月の光程度の明るさが必要となる。有効視認距離はおおむね100メートル前後であった。

AN/PVS-2

NSPU/1PN34

第2世代
マイクロチャンネルプレート(MCP)型光電子増倍管による可視光増幅方式を採用しており、分光感度特性はS-25型、光増幅率は20,000倍程度まで向上しており、有効視認距離は星の光で1,500メートル、月の光で2,700メートルとされている。ただし、高速の移動目標に対する結像能力に問題があり、戦車などの照準用としては不適であった。

AN/PVS-4

AN/PVS-5 ※PVS-5Dは第3世代相当

微光暗視眼鏡 JGVS-V3

75式照準用微光暗視装置II型 (B)

第3世代
第2世代と同様、MCP型光電子増倍管による可視光増幅方式を採用している。ただし、S-25型光電子増倍管にかえてヒ化ガリウム(GaAs)素子を採用することによって、検知可能な帯域が近赤外領域まで拡大しているほか、イオンバリア・フィルムにより被覆することで、より感度を向上させ、ノイズを削減している。光増幅率は30,000-50,000倍に向上し、有効視認距離も25%増加したとされている。また、通常の可視光増幅方式に加え、パッシブ遠赤外線方式を併用する機種も出現している。なお、高性能であることから、第3世代暗視装置の多くは生産国による輸出入規制が適用されており、使用者は官公庁に限られる。

AN/AVS-6 ANVIS


個人暗視眼鏡 JAVN-V6


AN/PVS-7

AN/AVS-9

AN/PVS-14 ※単眼式


個人用暗視装置 JGVS-V8


AN/PVS-15 ※双眼式

GPNVG-18 ※四眼式

AN/PVS-31 ※双眼式

AN/PSQ-20 パッシブ遠赤外線方式(サーマルイメージ)併用。

PN16K / PN21K

熱赤外 (TIR) 帯域PAS-13熱線映像装置による映像「FLIR」も参照

物体から放出される熱赤外線(波長 8-15μm、英語: Thermal InfraRed)を可視化する装置。これによる画像がいわゆるサーモグラフィー画像であり、このための装置を熱線映像装置(: thermal imager )と称する。なお、第0世代のアクティブ式暗視装置が使用していたのは近赤外線であり、熱線映像装置で使用される熱赤外線と近い周波数ではあるが、特性上大きく異なるものである。

あらゆる物体はそれ自身の温度によった遠赤外線を出している(黒体放射)ため、熱線映像装置は、光源が無い場所でも目標を視認することが可能となる。また、遠赤外線は可視光線と比較して、解像度が劣る一方で透過能力に優れるため、ある程度であれば越しに像を捕らえることもできる。例えば兵士対空砲台に隠されていれば、その微妙な温度差による赤外線の強さを画面に表示して見分けられる。

初期のものは、重量と容積が過大で、歩兵用装備として実用的なものではなかった。小型化を難しくした原因は、おおむね下記の二点であった。
-180℃以下にまで冷却しなければ赤外線受光素子が機能しないこと。

赤外線受光素子が一次元のみなので、画像を得るために機械的な走査線スキャン装置が必要だったこと。

特に前者は深刻な問題であり、当初は冷却のためにガスボンベが必須とされ、ガスの残量が使用可能時間を制限した。スターリングエンジンを応用したスターリングクーラーが実用化されると歩兵が肩に担げるほどにまで小型化されたが、歩兵用としてはまだ大きすぎた。

1990年代になって冷却を必要としない二次元受光素子が開発され、初めて小銃スコープに装着できる実用的なものが完成した。このため、上述の通り、第3世代のパッシブ可視近赤外光暗視装置には、熱線暗視方式を併用している機種もある。パッシブ光学に熱線暗視画像をオーバーレイして併用したENVG-Bの画像
フュージョン方式A comparison of I2 only night vision (above) and I2 plus thermal fusion (below)

フュージョン ナイト ビジョンは、I2 (画像増強) と赤外線画像を組み合わせた暗視技術の新しい進歩であり、中 (MWIR 3-5 μm ) および/または長波長 (LWIR 8-14 μm) の波長範囲で機能する。初期のモデルは 2000年代に登場し、2010年代に進化した。一部のデバイスは専用のフュージョンデバイスだが、その他のデバイスは、標準のI2ナイトビジョン デバイスにサーマル オーバーレイを追加できるクリップ式サーマルイメージャー。フュージョンシステムは、サーマルオーバーレイ付きの「融合」ナイトビジョン、ナイトビジョンのみ、サーマルのみ、およびアウトライン (サーマル シグネチャを持つオブジェクトの輪郭を描く) やハイライトする「デカフラージュ」などのさまざまな特別なフュージョンモードなど、さまざまなイメージングモードを付与する。

AN/PSQ-20 ENVG(強化暗視ゴーグル)

AN/PSQ-36 FGE(Fusion Goggle Enhanced、以前は Fusion Goggle System 用の FGS)

AN/PSQ-42 ENVG-B (強化暗視ゴーグル - 双眼鏡)

AN/PSQ-44 ENVG-B(強化暗視ゴーグル - 双眼鏡)

AN/PAS-29 COTI/E-COTI(拡張)クリップオン熱探知カメラ

非軍用用途
一般写真分野での使用

一般撮影用カメラのレンズとして、コンタックスRTS用にN-ミロター210mmが販売されていたことがある。
天文分野での使用

対象が暗いことから、1980年代後半に天文用としても注目された。肉眼では光害の少ない場所でも6等星までしか見えないが、50mm F1.4のレンズの後ろにイメージ・インテンシファイアを取り付け出力側蛍光面を50mmのアイピースで見ると、9-10等星まで見ることができる。また、光電管の分光感度が赤外線部にまで伸びているためHα線などほとんど目に見えない光での観測ができる利点もあった。

ただし、バックの光も増幅されるため、光害の少ない場所でないと利点を生かすことができない。また、解像力やSN比は低い。
自動車の暗視装置・システムレクサスの暗視装置HUD

自動車の暗視装置・システムは、赤外線カメラでとらえた映像をディスプレイに表示し、夜間の視界を拡大鮮明化することで安全走行に寄与する夜間運転支援システムである。遠赤外線カメラを用いて熱源を検知するものと、近赤外線を照射し赤外線カメラで検知する2つのタイプがある。コスト的には近赤外線タイプが優れるが、検知距離では遠赤外線タイプに劣るなど一長一短がある。各自動車会社が考案し実用化しているが、コストなどの問題から全車に装備するまでは至っておらず、採用されているのは一部の高級車もしくは用途が限定された専用車に限られている。
GM暗視装置
GMレイセオンライセンス(名称および独占使用権も含む)を元に開発したシステムで、レイセオンが開発した民間向け低コストの遠赤外線カメラが用いられている。カメラはフロントグリルに埋め込まれ、映像はHUDに表示される。全面改良された2000年モデルのキャデラック・ドゥビル(現キャデラック・DTS)に自動車用安全装備としては初めてオプション設定され、それ以降はシボレー・タホなどにもオプション設定された。2000年モデルでは7,000台以上に装着され好調だったが、世界初のシステムということもあり、オプション金額が高額だったために年々装着数は落ち込み、2003年に廃止されたと同時に暗視装置のライセンスも返上した。
THERMAL-EYE
L-3 コミュニケーションズインフラレッドプロダクツ(元レイセオンコマーシャルインフラレッド)により発売されている遠赤外線カメラで、外付けの自動車用もラインナップされている。
インテリジェント・暗視装置システム
本田技研工業が開発したシステム。2基の遠赤外線カメラにより歩行者や対向車の位置や動きを検知し、HUD上の表示とブザー音により運転者の注意を促すなど、唯一インテリジェント化がされている。2004年に全面改良されたホンダ・レジェンド日本でのみオプション設定されている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:35 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef