数理モデル
[Wikipedia|▼Menu]
ところが、その仮定から考えれば明らかではないことに、自然界には物理的なスケールの違う階層からなる階層構造があり、それぞれの階層においてなんらかの秩序が見られることが知られている(素粒子原子分子高分子固体流体細胞組織器官群れ社会習慣流行伝染生態系地形天候惑星系銀河銀河団宇宙、など)。そもそも、われわれ人間のような、外界に対する認識解釈を行う知的能力を持った生物がいるということが世界がある程度の法則性を持つことの証拠である[3]。そこで、一般に特定の階層に注目し、そこになりたつ普遍的な法則を推定しようという試みがなされる。数理モデルを構築するには必然的にシステムを目的のスケールにおいてよく記述するマクロな変数の導入が必要となる。

数理モデルに導入されるそういった変数の数は少なければ少ないほどより単純でシンプルな現象への理解へと導くという観点から、大成功していると思われるのは、熱力学、流体を記述するナビエ-ストークス方程式物性論における平均場近似などがある。

また、一つ下の階層における法則が知られている場合には、それを構成要素として組み立てたモデルがよく作られ、さらにその下位の階層における構造は捨象する(例えば、気体分子運動論、電気回路、ニューラルネットワークなど)。しかし、生体や社会のように対象が複雑で、階層間の法則の分離の様子が自明でない場合や、スケールが一つ下の要素を考えるだけで要素数の多さやその多様性などにより変数が爆発的に多くなってしまうものとなれば、適切な変数の設定やモデル化ができるかどうかはもとより、人間に理解できる程度に単純で普遍的な現象論の存在を仮定することは議論がわかれるところである[注 1]
遅い変数の存在と発展方程式の縮約可能性

前項と関係することでもあるが、系の発展を少数の本質を表す変数によって記述できることの正当性は、その系に変化が速い変数と遅い変数が共存することによることが多い。物理学ではこれは断熱近似[4]、隷属原理[5][6] などとよばれ、数学的にいえばこれは中心多様体上での発展方程式をみいだすことに対応する。前項との関係においては、しばし様々な系において系のミクロな現象がマクロな状態よりも速く変化することが多いことによって、ミクロを無視したマクロな変数のモデルをたてられることが対応する。
コンピュータシミュレーション「数値解析」も参照

対象となる現象が大規模で人手による解析が困難、あるいはナビエ-ストークス方程式のようにモデルの解を解析的に得られない場合は、コンピュータによるシミュレーションによって解を求める。代表的なアルゴリズムとして、オイラー法ルンゲ=クッタ法有限要素法モンテカルロ法等がある。コンピュータの性能向上によって、扱える数理モデルの幅が大変広まった。
利点
現象の理解

上述したように、数理モデルを構築することによって得られることは、まずは現象の理解があげられる。また、数学的に表現することによって、扱いが容易になったり、数学の知見を活用することができる。
実験をしないで現象のふるまいを予測する

適切な数理モデルが得られれば、様々な条件化における現象を定量的に予測できるようになる場合が多い。現実のシステムを用いて観測を行う必要がなくなれば、そのために必要な労力・損失を省くことができる。感染症のパンデミックに対して、交通規制、隔離、ワクチン配布などの様々な戦略をどう用いればいいのか、といったシミュレーションも行われている。臨界前核実験では、実際に核爆発を起こさず、数理モデルのパラメータ決定のみが目的とされる。

近年はコンピュータの進化によって、莫大な変数を持つような複雑な数理モデルに対しても、シミュレーションにより解の振る舞いを実用的な時間内に求めることが可能になりつつある。例として、IBMによる大脳皮質コラムのシミュレーションBlue Brainプロジェクトや、地球シミュレータによる温暖化の予測などが挙げられる。
評価基準
本質の抽出

一般的には、対象とするシステムの本質的な特徴を表すことができて、かつできるだけ少ない変数を抽出したものがよいモデルとされる。
予測可能性

これまでの観測結果から構築した数理モデルによる、今後の観測データの予測能力はその数理モデルの評価基準になる。どのような数理モデルも、その数理モデル内の自由なパラメータをもつものである。パラメータを推定したのちに、未知のデータに対する予測の正確性を評価すればそのモデルの評価基準となる。
実験データとの照合

実験データとの定量的な一致・予測能力があるものは優れたモデルとされる。
数学的扱いやすさ

数理モデルの場合は、数学的な扱いやすさが重要になる。例えば、ある方程式によりモデル化を行った場合に、その解が解析的に得られるようなものは、数学的に大変性質がよいものだといえる。方程式が非線型の場合は一般にはこれは困難だが、具体例としては、非線型なリズムを持つものが多く同期しあう現象を扱った蔵本モデルは要素数無限大の極限において解が解析的に得られる。解析的に得られない場合は数値解析によって近似解を求める。
数学的な分類
線型か非線型か

数理モデルは多くの場合、変数を含んでいる。この変数に作用する演算子線型である場合は、モデルは線型だといわれる。線型な場合、重ね合わせの原理により、の発展を独立なモードに分解して考えることができる。要素還元的な方法が非常にうまく行くのは、モデルが線型であり、システムのふるまいが要素のふるまいに分解することができる線型な場合である。その基礎には線型演算子スペクトル分解がある。例えば、弦の振動や熱の拡散過程の場合、熱の分布をフーリエ変換し、それぞれの波数のモードに分解すれば、各々独立に方程式に従うので相互作用を無視することができる。たくさんのばねとおもりをつなげたような系を考えてもやはり線型連立常微分方程式となり、同様である。

一方、非線型の場合は、方程式が非常にシンプルな場合でも系の発展にカオスなどの複雑な状況が生じることがあることが知られている。非線型の微分方程式は一般的には解析的に解けない。(cf.可積分系ソリトン)
決定論的か確率過程か

システムの発展を記述するときに、その発展が直前の状態によって完全に決定されるような決定論的な枠組みを用いるか、発展に確率的な要素を取り込むかの違いがある。常微分方程式偏微分方程式によるモデル化は決定論的なものにあたる。(解の存在と一意性が保障されているような)微分方程式で記述すれば、状態の発展は初期値のみによって決まる。一方、マルコフ過程確率微分方程式マスター方程式での記述は、確率的な過程を取り込む場合にあたる。
動的か静的か

時間による発展を取り込むか取り込まないかで、動的か静的かに分類される。例えば典型的な動的なモデルとして、微分方程式差分方程式によるものが挙げられる。また静的なモデルとして、系の状態を最適化問題の極値として与えるものを指し示すことができる。
用いられる数学

常微分方程式差分方程式偏微分方程式積分方程式幾何学確率過程統計学グラフ理論ゲーム理論最適化問題マルコフ過程マスター方程式ベイズ統計学などの数学が用いられるが、それには限らない。
代表例


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:50 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef