微生物
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

その後の進化は遅く[38]先カンブリア時代の約30億年間は(地球上の生命の歴史の大部分)、微生物がすべての生物であった[39][40]。2億2,000万年前の琥珀(こはく)から細菌、藻類、真菌類が確認されており、少なくとも三畳紀以降では、微生物の形態はほとんど変わっていないことが示されている[41]。しかし、新たに発見されたニッケルの生物学的役割 (en:英語版) 、特にシベリア・トラップからの火山噴火によってもたらされた役割は、ペルム紀-三畳紀境界の大量絶滅の終わりにかけて、メタン生成菌の進化を加速させた可能性がある[42]

微生物は進化の速度が比較的速い傾向がある。ほとんどの微生物は急速に繁殖することができ、細菌はまた、大きく異なる種間であっても、接合(英語版)、形質転換形質導入によって遺伝子を自由に交換することができる[43]。このような遺伝子水平伝播は、高い突然変異率やその他の形質転換手段と相まって、微生物が(自然淘汰によって)急速に進化して、新しい環境で生き残り、環境ストレスに対応することを可能にしている。この急速な進化は、抗生物質に耐性を持つ多剤耐性病原菌(スーパー耐性菌)の発生につながっており、医学において重要である[44]

2012年、原核生物と真核生物の間の過渡期にある可能性のある微生物が、日本の科学者によって発見された。パラカリオン・ミョウジネンシス(Parakaryon myojinensis)は、典型的な原核生物よりも大きいが、真核生物のように核物質が膜に包まれており、内部共生体が存在する、他に類を見ない微生物である。これは、原核生物から真核生物への発展段階を示す、微生物の最初のもっともらしい進化形態であると考えられている[45][46][47]
古細菌詳細は「古細菌」を参照「原核生物」も参照

古細菌(archaea)は原核単細胞生物であり、微生物学者のカール・ウーズが提唱した3ドメイン系(英語版)において、生命の最初のドメインを形成している。原核生物とは、細胞核やその他の膜結合細胞小器官を持たないものと定義される。古細菌は、かつては細菌と同じグループに分類されていて、この決定的な特徴を共有していた。1990年、ウーズは、生物を細菌、古細菌、真核生物に分ける3ドメイン系を提唱し[48]、その結果、原核生物のドメインが分割された。

古細菌は、遺伝学的にも生化学的にも、細菌とは異なっている。たとえば、細菌の細胞膜は、エステル結合を持つホスホグリセリドから作られているが、古細菌の細胞膜は、エーテル脂質から作られている[49]。古細菌は当初、熱水泉のような極限環境 (en:英語版) に生息する好極限性細菌(extremophiles)とされていたが、その後、あらゆる種類の生息地で発見されている[50]。今ようやく科学者たちは、古細菌が環境中でいかに一般的なものであるかを理解し始めている、Thermoproteota(以前は Crenarchaeota、クレン古細菌)は、海洋で最も一般的な生命体であり、水深150 m以下の生態系を支配している[51][52]。これらの生物は土壌にもよく見られ、アンモニアの酸化に重要な役割を果たしている[53]

古細菌と細菌を合わせたドメインは、地球上で最も多様で豊富な生物群を構成し、温度が+140℃ 未満のほぼすべての環境に生息している。それらは、水中土壌空気中、生体内のマイクロバイオーム熱水泉、さらには地殻の奥深くの岩石にさえ存在している[54]。原核生物の数は約500個、つまり 5×1030 と推定され、地球上の生物数(英語版)の少なくとも半分を占めている[55]

原核生物の生物多様性は未知数だが、非常に大きい可能性がある。2016年5月に発表された推計によると、既知の生物種の数と生物の大きさを比較したスケーリング則に基づいて、地球上の生物種はおそらく1兆種で、そのほとんどは微生物であろうと推定されている。現在、その1%のさらに1/1000が報告されているにすぎない[56]。ある種の古細菌細胞は集合し、特にDNA損傷を引き起こすようなストレス性環境条件下では、直接接触することで細胞から細胞へとDNAを転移させる[57][58]
細菌詳細は「細菌」を参照約10,000倍に拡大した黄色ブドウ球菌(Staphylococcus aureus)の電子顕微鏡像

細菌(bacteria)は古細菌と同じく原核生物であり、単細胞で、細胞核や膜結合細胞小器官を持たない。細菌は、チオマルガリータ・ナミビエンシス(Thiomargarita namibiensis)などごく稀な例外を除いては微小である[59]。細菌は個々の細胞として機能し、繁殖するが、しばしば凝集して多細胞の群体を形成することがある[60]粘液細菌などの一部の種は複雑なスウォーム構造(英語版)に凝集し、ライフサイクル(生活環)の一部として多細胞グループとして活動したり[61]大腸菌などの細菌集落の中でクラスターを形成することがある。

細菌のゲノムは通常、環状細菌染色体(英語版)、つまりDNAの単一環であるが、プラスミドと呼ばれる小さなDNA断片を含むこともある。これらのプラスミドは、細菌接合(英語版)によって細胞間を移動することができる。細菌は、細胞を取り囲む細胞壁を持ち、これが細胞に強度と剛性を与えている。細菌は二分裂または時には出芽によって繁殖するが、減数分裂による有性生殖は行わない。しかし、多くの細菌種は、自然形質転換と呼ばれる遺伝子水平伝播プロセスによって、個々の細胞間でDNAを移動させることができる[62]。非常に弾力的な胞子を形成する種もあるが、細菌にとってこれは生存のための機構であり、繁殖のためではない。最適な条件下では、細菌は極めて速く増殖し、その数は20分ごとに倍増することがある[63]
真核生物詳細は「真核生物」を参照

成体の姿を肉眼に見ることができるほとんどの生物は真核生物(eukaryotes)であり、ヒトも含まれる。しかし真核生物の多くは微生物でもある。細菌古細菌とは異なり、真核生物は細胞内に細胞核ゴルジ装置ミトコンドリアなどの細胞小器官を持つ。細胞核は、細胞のゲノムを構成するDNA(デオキシリボ核酸)を収容する。DNA自体は複雑な染色体の中に配置されている[64]。ミトコンドリアは、クエン酸回路酸化的リン酸化が起こる部位であるため、代謝に不可欠である。これは共生細菌から進化したもので、残存ゲノムを保持している[65]。細菌と同様、植物細胞にも細胞壁があり、他の真核生物で見られる細胞小器官に加え、葉緑体のような細胞小器官を含んでいる。葉緑体は光合成によってからエネルギーを作り出すもので、これも元々は共生細菌であった[65]

単細胞真核生物は、そのライフサイクル全体を通じて単一の細胞から構成される。対して、ほとんどの多細胞真核生物は、ライフサイクルの最初のみ接合子と呼ばれる単一細胞から構成されるため、この条件は重要である。微生物真核生物は、一倍体か二倍体のどちらかであり、中には複数の細胞核を持つものもある[66]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:146 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef