平方完成
[Wikipedia|▼Menu]
一般の n 変数二次式は、A を対称行列として t x A x + t x b + c = t ( x − h ) A ( x − h ) + k ( h = − 1 2 A − 1 b , k = c − 1 4 t b A − 1 b ) {\displaystyle {}^{t}xAx+{}^{t}xb+c={}^{t}(x-h)A(x-h)+k\quad \left(h=-{\frac {1}{2}}A^{-1}b,\quad k=c-{\frac {1}{4}}{}^{t}bA^{-1}b\right)}

で書ける。

A が対称でないときは h と k の式が h = − ( A + t A ) − 1 b , k = c − t h A h = c − t b ( A + t A ) − 1 A ( A + t A ) − 1 b {\displaystyle h=-(A+{}^{t}A)^{-1}b,\quad k=c-{}^{t}hAh=c-{}^{t}b\,(A+{}^{t}A)^{-1}A\,(A+{}^{t}A)^{-1}b}

とやや一般になるが同じ式で書ける。
幾何学的解釈

二次方程式 x 2 + b x = a {\displaystyle x^{2}+bx=a}

を平方完成により解くことを考える。この過程を、面積図で表すと次のようになる。

x2 は一辺が x の正方形の面積、bx は縦横が b, x の長方形の面積に等しい。面積 bx の長方形を2等分割して、長さ x の辺で正方形と貼り合わせる。すると、正方形の角が欠けた形になる。

欠けている角に一辺が .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}b/2 の正方形を補うと、全体が正方形になる。したがって、両辺に (b/2)2 を加えると、平方 (x + b/2)2 が完成する。
類似の手法

平方完成とは、u2 + 2uv の形の式に第三項 v2 を加えて完全平方式を作る操作である。u2 + v2 が先に与えられていても、中間項 2uv または −2uv を加えることにより完全平方式を得ることができる。
相反式の平方完成

正の実数 x に対して、自身とその逆数の和は x + 1 x = ( x − 2 + 1 x ) + 2 = ( x − 1 x ) 2 + 2 {\displaystyle {\begin{aligned}x+{\frac {1}{x}}&=\left(x-2+{\frac {1}{x}}\right)+2\\[5pt]&=\left({\sqrt {x}}-{\frac {1}{\sqrt {x}}}\right)^{2}+2\end{aligned}}}

このように平方完成すると、正の数とその逆数の和は常に 2 以上であることが示される。
複二次式の因数分解

複二次式 x 4 + 324 {\displaystyle x^{4}+324}

因数分解することを考える。この式は ( x 2 ) 2 + 18 2 {\displaystyle (x^{2})^{2}+18^{2}} と見ることができるから、中間項 2(x2)(18) = 36x2 を考え、 x 4 + 324 = ( x 4 + 36 x 2 + 324 ) − 36 x 2 = ( x 2 + 18 ) 2 − ( 6 x ) 2 = ( x 2 + 18 + 6 x ) ( x 2 + 18 − 6 x ) = ( x 2 + 6 x + 18 ) ( x 2 − 6 x + 18 ) {\displaystyle {\begin{aligned}x^{4}+324&=(x^{4}+36x^{2}+324)-36x^{2}\\&=(x^{2}+18)^{2}-(6x)^{2}\\&=(x^{2}+18+6x)(x^{2}+18-6x)\\&=(x^{2}+6x+18)(x^{2}-6x+18)\end{aligned}}}

と因数分解できる。
二次方程式の解「二次方程式の解の公式」を参照
二次関数のグラフ.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;align-items:center}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}二次関数のグラフが x軸方向に h = 0, 5, 10, 15 平行移動する様子。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:43 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef