巨大過剰数
[Wikipedia|▼Menu]

巨大過剰数[1](きょだいかじょうすう、: colossally abundant number)とは、自然数 n であって、すべての k > 1 に対してnの約数の総和を表すσ1(n)≡σ(n) のグラフ(n≦250)

σ ( n ) n 1 + ε ≥ σ ( k ) k 1 + ε {\displaystyle {\frac {\sigma (n)}{n^{1+\varepsilon }}}\geq {\frac {\sigma (k)}{k^{1+\varepsilon }}}}

を満たすような ε > 0 が存在するものである[2]。ただし σ は約数関数である。
概要

巨大過剰数は、インドの数学者シュリニヴァーサ・ラマヌジャンにより考案された。

巨大過剰数は、小さい順に

2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 160626866400, 321253732800, 9316358251200, 288807105787200, 2021649740510400, 6064949221531200, 224403121196654400,…(オンライン整数列大辞典の数列 A004490)

巨大過剰数のうち 2 は不足数、6 は完全数であり、12 以上の巨大過剰数は全て過剰数である。

すべての巨大過剰数は超過剰数である。隣り合う巨大過剰数の比は、

2, 3, 2, 5, 2, 3, 7, 2, 11, 13, 2, 3, 5, 17, 19, 23, 2, 29, 31, 7, 3, 37, 41, 43, 2, 47, 53, 59, 5, 61, 67, 71, 73, 11, 79, 2, 83, 3, 89, 97, 13, 101, 103, 107, 109, 113, 127, 131, 137, 139, 2, 149, 151, 7, 157, 163, 167, 17, 173, 179, 181, 191, 193, 197, 199, 19, 211, 3,…(オンライン整数列大辞典の数列 A073751)

100番目の巨大過剰数は、171桁の数

533187564151227457465199401229454876347036513892234205802944360099435118364718466037392872608220305945979716166395732328054742493039981726997486787797703088097204529280000

で、 σ ( n ) n {\displaystyle {\frac {\sigma (n)}{n}}} は10.5681…で、約数の和が自分自身の10.5681…倍になる。

また、少なくとも107番目までは、隣り合う巨大過剰数の比は素数になる。107番目の巨大過剰数は、77908696桁の数で、 σ ( n ) n {\displaystyle {\frac {\sigma (n)}{n}}} は33.849…で、約数の和が自分自身の33.849…倍になる。[3]

σ ( c ) c ≥ n {\displaystyle {\frac {\sigma (c)}{c}}\geq n} を満たす最小の巨大過剰数 c は、

6, 120, 55440, 367567200, 288807105787200, 1970992304700453905270400, 46015447651610234928592313897306120347488000, 20945137389024582113645213620899991935836129981347124754955196200225728000,…(オンライン整数列大辞典の数列 A110442)
歴史

巨大過剰数は最初にラマヌジャンによって研究され、彼の発見は高度合成数に関する1915年の論文に含まれることを意図していた。[4]残念ながら、ラマヌジャンが彼の作品を提出したジャーナルの発行者であるロンドン数学会は、当時財政難に陥っており、ラマヌジャンは印刷のコストを削減するために作品の側面を削除することに同意した。[5]彼の発見は主にリーマン予想を条件としており、この仮定により、巨大過剰数のサイズの上限と下限を見つけ、Robinの不等式(以下を参照)として知られるようになるものが n の値が十分に大きいすべての整数に当てはまることを証明した。

数のクラスは、1944年のLeonidas Alaogluとポール・エルデシュの論文でわずかに強い形で再考され、ラマヌジャンの結果を拡張しようとした。[6]
性質

巨大過剰数は

2 a 2 3 a 3 5 a 5 ⋯ p ( b ) a p ( b ) {\displaystyle 2^{a_{2}}3^{a_{3}}5^{a_{5}}\cdots p(b)^{a_{p(b)}}}

という形で素因数分解され、

a 2 ≥ a 3 ≥ ⋯ ≥ a p ( b ) {\displaystyle a_{2}\geq a_{3}\geq \cdots \geq a_{p(b)}}

を満たす数である (p(b)は 2 から数えて b 番目の素数)。

巨大過剰数は素数階乗の積で表すことができる。(例 21621600 = 2 × 2 × 6 × 30 × 30030 = 2# × 2# × 3# × 5# × 13#)

1944年に、Alaogluとエルデシュは、2つの連続する巨大過剰数の比は常に素数であると推測した。2つの連続する巨大過剰数の比が常に素数または半素数であることを示した。比が素数の2乗になることはない。

Alaogluとエルデシュの予想は、少なくとも107番目の巨大過剰数までは成り立つ。
リーマン予想との関係

1980年代に、Guy Robinはリーマン予想が、次の不等式がすべての n > 5040 に当てはまるという主張と同じであることを示した。[7]

σ ( n ) < e γ n log ⁡ log ⁡ n ≈ 1.781072418 ⋅ n log ⁡ log ⁡ n {\displaystyle \sigma (n)<e^{\gamma }n\log \log n\approx 1.781072418\cdot n\log \log n\,} (γ: オイラーの定数

この不等式は、27個の数

2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180, 240, 360, 720, 840, 2520, 5040(オンライン整数列大辞典の数列 A067698)

で失敗することが知られている。

Robinは、リーマン予想が真である場合、n = 5040 が失敗する最大の整数であることを示した。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:30 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef