宇宙飛行
[Wikipedia|▼Menu]
また、1903年には「反作用利用装置による宇宙探検」(ロシア語: Исследование мировых пространств реактивными приборами)で液体水素液体酸素を燃料とする流線型のロケットの設計図を発行したが、これらの理論的な研究はロシア以外では著名ではなかった。1920年代には多段式ロケットジェットエンジンの理論を完成させ、世界で初めて宇宙ステーションを考案した[1]

ロバート・ゴダード1919年に発表した論文である「月飛行の可能性」で、宇宙飛行技術は工学分野の可能性へ移った。ゴダードが製作した世界初の液体燃料ロケット1926年3月16日に打ち上げられ、2.5秒間で約12.5メートル(41フィート)上昇した。このロケットで使用されたラバル・ノズル(一旦直径が小さくなり、後に広がっていく、途中がくびれた形状のノズル)と液体燃料ロケット技術は後の宇宙飛行技術の重要人物となるヘルマン・オーベルト及びヴェルナー・フォン・ブラウンにとっての重要な鍵となった。

宇宙に到達した史上初のロケットはV2ロケットの原型であるA4ロケットである。1942年10月3日に行われた3回目の打上げでA4は宇宙空間に到達し、打ち上げ地点から192キロメートル先の地点に落下した。1957年10月4日にはソビエト連邦のスプートニク1号が打ち上げられ、世界初の人工衛星となった。この打ち上げによってスプートニク・ショックが引き起こされ、アメリカ合衆国は震撼した。1961年4月12日には世界初の有人宇宙飛行となるボストーク1号が打ち上げられ、ユーリ・ガガーリンが世界初の宇宙飛行士となった。

ロケットによる打ち上げは現代でも宇宙に到達する最も主要な手段である。スクラムジェットエンジンなどの他の技術は地球重力圏を脱出する手段としてはまだ速度が足りず、実用にはほど遠い[2]
地上発射型の宇宙飛行技術
宇宙飛行の認定基準宇宙へ向けて発射されるプロトンロケット

最も一般的な宇宙の境目はカーマン・ラインを基準とする地上100キロメートル(62マイル)から上方を指す(アメリカ合衆国では地上80キロメートル(50マイル)以上の空間を宇宙と定義している)[3]

地表から発射された物体が地球を周回するためには第一宇宙速度が必要とされるが、これは地球重力圏からの脱出速度である第二宇宙速度よりずっと低い[4]
弾道飛行詳細は「弾道飛行」を参照

弾道飛行の際に速度が十分であれば、宇宙機は宇宙空間に達するが、地球周回軌道には乗らずに地上に降下する。弾道飛行による飛行は何時間も続けることが出来る。パイオニア1号は月に到達することを意図したNASAの最初の宇宙探査機だった。1号(0号から3号までの4機)は探査に部分的に失敗し、発射から43時間後に大気圏に帰還する前に11万3,854キロメートル(7万746マイル)に達した[5]

2004年5月17日に、民間宇宙飛行チームが「GoFast Rocket」を発射した。これは世界初の民間宇宙船の発射であった。2004年6月21日にはスペースシップワンが打ち上げられ、民間企業による有人宇宙飛行として世界で初めて高度約100キロメートルを超えた宇宙船、及び民間宇宙飛行士となった[6]
地球周回軌道詳細は「地球周回軌道」を参照

最低高度の地球周回軌道でも弾道飛行とは比べものにならないほどの速度(第一宇宙速度は秒速7.9キロメートル)が必要とされるため、それを達成するためには高度な推進技術が要求される。宇宙空間で安定した周回軌道に乗り続けるために、宇宙船の軌道速度は第一宇宙速度に到達していなければならない[7]
直接到達詳細は「直接到達(英語版)」を参照

周回軌道を達成するのは惑星間の航行に不可欠ではない(宇宙探査機は第二宇宙速度(脱出速度)に到達する必要はある)。初期のロシアの宇宙船は非常に高い高度を達成した。またNASAのアポロ計画では初期段階では月までの直接到達を考えていたが、後に重量面の問題が発生しこれを取りやめた。外惑星への多くの宇宙探査機は直接到達を選択し、地球周回軌道には入らない[8]

しかし、今後の宇宙探査にはNASAのオリオンのように地球周回軌道上での宇宙船の組み立てが考慮されている[9][10][11]
その他の方法での宇宙到達詳細は「ロケット以外の打ち上げ方式」を参照

ロケットを使用せずに宇宙に到達する方法がいくつも考案されている(軌道エレベータマスドライバーなど)が、その全ては現代ではまだ実現不可能である。電磁誘導を利用して物体を発射するローンチ・ループには知られている研究者が全くおらず開発は進んでいない。その他の考案としてはスカイロンがあり、スクラムジェットを利用して第一宇宙速度に到達しようとするものであるが実用化されていない[12][2]
発射台と射場、離陸詳細は「射場」および「発射台」を参照

発射台は宇宙船を移動するために設計された固定構造物である。一般的に発射台の構造は発射塔と発射炎を避けるための堀から構成される。これらは宇宙船を組み立て・整備・燃料注入する施設に囲まれる。アメリカの射場は翼のある宇宙船(スペースシャトル)の移動を容易にするための設計が為されており、長い滑走路を持つ。射場は主に騒音と安全面の理由から、一般人の居住地とは遠く離れた場所に建設されている。

発射は頻繁にある一定の打ち上げ時間帯に制限される。時間帯の制限は天体と軌道の位置関係によるもので、最も大きな影響として地球の自転が挙げられる。通常、目標となる軌道は地球の自転回転軸に対する固定角度で比較的平坦な飛行経路を取っている。そして、地球はこの軌道の中で回転しているからである。
再突入と着陸 / 着水
再突入詳細は「大気圏再突入」を参照

軌道上の宇宙船には大量の運動エネルギーがある。宇宙船が安全に大気圏内で蒸発せずに着陸するためにはこのエネルギーを捨てなければならない。通常、この過程にはエアロブレーキングが使用されるが、宇宙船を空力的加熱から守る特別な方法が必要となる。再突入の理論はハリー・ジュリアン・アレンが提唱した。この理論に基づき、宇宙船は鈍い形 (blunt shapes) で大気圏再突入を果たす。鈍い形となるには、宇宙船の運動エネルギーの1パーセントが大気との衝突で発生する熱エネルギーに変換されなければならない[13]
着陸 / 着水詳細は「着水」を参照

マーキュリー計画ジェミニ計画アポロ計画のカプセルは全て海に着水した[14][15][16]。これらのカプセルは比較的遅い速度で着陸するように設計された。ロシアのソユーズは陸に着陸する[17]ために制動ロケットを使用する。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:82 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef