化学構造式
[Wikipedia|▼Menu]
( CH 3 ) 2 CHOH {\displaystyle {\ce {(CH3)2CHOH}}} または CH ( CH 3 ) 2 OH {\displaystyle {\ce {CH(CH3)2OH}}} (2-プロパノール)

いずれの場合も、水素原子を含むすべての原子が表示されている。また、 O {\displaystyle {\ce {O}}} が括弧内に配置されることで C = O {\displaystyle {\ce {C=O}}} が暗示されるカルボニル基を示すことも役に立つ。たとえば: CH 3 C ( O ) CH 3 {\displaystyle {\ce {CH3C(O)CH3}}} (アセトン)

したがって、括弧の中の原子の左側を見て、どの原子と結合しているかを確認することが重要である。これは、示性式から骨格式やルイス構造式などの別の形式の構造式に変換するときに便利である。また、示性式ではアルデヒドを CHO {\displaystyle {\ce {CHO}}} 、カルボン酸を CO 2 H {\displaystyle {\ce {CO2H}}} または COOH {\displaystyle {\ce {COOH}}} 、エステルを CO 2 R {\displaystyle {\ce {CO2R}}} または COOR {\displaystyle {\ce {COOR}}} など、さまざまな官能基の表し方がある。ただし、示性式を使用しても、化合物の分子構造や炭素間の結合数がすぐにわかるわけではなく、炭素に結合している原子の数や、炭素に電荷があるかどうかから確認する必要がある。
骨格式詳細は「骨格式(英語版)」を参照

骨格式(英語版)は、より複雑な有機分子に対する標準的な表記法である。この種類の図は、有機化学者のアウグスト・ケクレが最初に使用したもので、炭素原子を原子記号Cで示さず、線分の頂点(角)と末端に位置することを暗示している。炭素原子に結合した水素原子は示されておらず、各炭素原子は炭素原子に4つの結合を与えるのに十分な水素原子と結合していると解釈される。炭素原子に存在する正または負の電荷は、暗示された水素原子の1つによって置き換えられる。炭素以外の原子に結合している水素原子は、明示的に書かなければならない。骨格式のもう一つの特徴は、特定の構造を加えることによって、化合物の立体化学、すなわち三次元構造を決定することができることである。多くの場合、骨格式は、線の代わりにくさびを用いることで立体化学を示すことができる。実線のくさびは紙面より上向きの結合を表し、破線のくさびは紙面より下向きの結合を表している。

イソブタノールの骨格式,(CH3)2CHCH2OH

透視図詳細は「ニューマン投影式」および「のこぎり台投影式」を参照
ニューマン投影式とのこぎり台投影式

ニューマン投影式のこぎり台投影式は、特定の配座異性体を描いたり、ビシナル立体化学を区別するために使われる。どちらの場合も、特定の2つの炭素原子とそれらを結ぶ結合が関心の対象となる。違いは視点が少し異なることで、ニューマン投影式は関心のある結合を真っすぐ見下ろすのに対し、のこぎり台投影式は同じ結合をやや斜めから見ている。ニューマン投影式では、結合に垂直な平面を円で表し、手前の炭素にある置換基と奥の炭素にある置換基を区別している。のこぎり台投影式では、手前側の炭素は通常左側で、常に少し低い位置に位置する。手前側の炭素を示すのに矢印を使うこともある。のこぎり台投影式は骨格式に非常によく似ており、線の代わりにくさびを使って分子の立体化学を示すこともできる。のこぎり台投影式は、分子の形状や配置をあまりうまく表示できないため、骨格式とは区別される。ニューマン投影式とのこぎり台投影式のどちらを用いても、フィッシャー投影式を作成することができる。

ブタンのニューマン投影式

ブタンののこぎり台投影式

シクロヘキサンの立体配座詳細は「シクロヘキサンの立体配座」を参照

シクロヘキサンやその他の小員環化合物の具体的な立体配座は、標準的な表記法を使って示すことができる。たとえば、シクロヘキサンの標準的ないす形配座は、炭素原子の平均面よりやや上からの透視図によって、どの基がアキシアル(上下に垂直)であり、どの基がエクアトリアル(ほぼ水平で上下にわずかに傾斜)であるかを明確に示す。前方の結合は、より強い線やくさびで強調してもよいし、しなくてもよい。立体配座は、いす - 半いす - ねじれ舟 - 舟 - ねじれ舟 - 半いす - いす、というように変化する。また、シクロヘキサンの立体配座は図に示すように、各段階で存在するポテンシャルエネルギーを示すために用いることもできる。いす形配座(A)はエネルギーが最も低く、半いす形配座(D)はエネルギーが最も高い。舟形配座(C)には山/極大があり、ねじれ舟形配座(B)には谷/極小がある。さらに、シクロヘキサンの立体配座は、分子が1,3-ジアキシアル相互作用(1, 3, 5位上のアキシアル置換基間の立体相互作用)を持っているかどうかを示すために使用することができる[6]β-D-グルコースのいす形配座シクロヘキサン立体配座と各配座におけるポテンシャルエネルギーの関係
ハース投影式詳細は「ハース投影式」を参照

ハース投影式環状糖に使用される。アキシアルとエクアトリアルの位置の区別はなく、置換基は結合している環原子の真上または真下に配置される。水素置換基は通常省略される。

しかし、ハース投影式を読むときに留意すべきことは、環状構造は平面ではないということである。したがって、ハースは3次元の形状を提供しない。ウォルター・ハースはイギリスの化学者で、炭水化物の研究とビタミンCの構造の発見でノーベル賞を受賞した。彼は今日、ハース投影式と呼ばれるさまざまな構造式も導き出した。ハース投影式では、ピラノース糖は六角形、フラノース糖は五角形で描かれる。酸素は通常、ピラノース糖では右上、フラノース糖では上部中央に配置される。環の上部にある細い結合は、遠くにある結合を示し、環の下部にある太い結合は、見る人に近い方の環の端を示す[7](左)グルコピラノースのフィッシャー投影式と(右)ハース投影式

β-D-グルコースのハース投影式

フィッシャー投影式詳細は「フィッシャー投影式」を参照

フィッシャー投影式は主に直鎖状の単糖に用いられる。任意の炭素中心において、垂直の結合線は立体化学的な位置番号に対応し、観察者から離れる方向に向けられ、横の線はくさびに対応し、観察者の方に向かう方向にある。糖鎖がこのような広がった重なり形配座をとることはありえないので、この投影は非現実的である。それにもかかわらず、フィッシャー投影式は、複数の連続したキラル中心を描く簡単な方法で、実際の立体配座に関する知識も必要としない。フィッシャー投影式は、3次元の分子を2次元に制限するため、キラル中心の配置を変更するには限界がある。フィッシャー投影式は、キラル炭素(不斉炭素)上のRおよびSの配置を決定するために用いられ、カーン・インゴルド・プレローグ順位則を用いて行われる。これは、エナンチオマージアステレオマーを表現し、区別するのに便利な方法である[7]

D-グルコースのフィッシャー投影式

制限

構造式は単純化されたモデルであり、化学構造のある側面を表現することはできない。たとえば、 形式化された結合は、非局在結合のような動的システムには適用できない場合がある。芳香族はそのようなケースであり、結合を表現するために慣習に依存している。構造式の様式が異なると、芳香族性の表現方法が異なり、同じ化学物質でも異なる表現になる場合がある。もう一つの例は、電子密度が形式的結合の外側に広がっている形式的二重結合で、室温では部分的な二重結合の性質を示して相互変換は遅くなる。すべての動的効果において、温度は相互変換の速度に影響を与え、構造の表し方を変える可能性がある。構造式に関する明確な温度は決まっていないが、標準温度とされることが多い。
参照項目

分子グラフ
(英語版) - 化合物の構造式をグラフ理論で表現したもの

化学式 - 化合物を元素の構成で表現する表記法

側鎖 - 主鎖に結合している置換基

化学構造 - 物質の化学的性質を分子などの内部構造と関連させた概念

注釈^ 構造式は化学式の一種である[2]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:32 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef