動原体
[Wikipedia|▼Menu]
中期には、CENP-E、Bub3Bub1のレベルは微小管が結合していないキネトコアと比較して1/3から1/4に低下するが、ダイニン/ダイナクチン、Mad1、Mad2、BubR1のレベルは1/10から1/100以下にまで低下する[26][27][28][29]

微小管が固定されるとouter plateに存在するスピンドルチェックポイントタンパク質のレベルは低下するが[29]、EB1(英語版)、APCなど他の構成要素や、Ran経路のタンパク質(RanGap1(英語版)とRanBP2(英語版))は微小管が固定されているときにのみキネトコアと結合する[30][31][32][33]。これらは、キネトコアが微小管の(+)端を認識し、適切な固定を確保し、固定されたまま動的な挙動を調節する機構に関係していると考えられる。

2010年に、キネトコアを含む脊椎動物の染色体組成のプロテオミクス解析を目的として、multiclassifier combinatorial proteomics(MCCP)と名付けられた複雑な手法を用いた研究が行われた[34]。この研究では、キネトコアに対する生化学的濃縮過程は行われなかったにもかかわらず、得られたデータにはセントロメアの全てのサブ複合体を含む、既知の125種類のセントロメアタンパク質全てに由来するペプチドが含まれていた。この研究からは未知のキネトコアタンパク質が約100種類存在することが示され、有糸分裂時の既知構造の数は2倍となり、キネトコアが最も複雑な細胞内構造体の1つであることが確認された。また包括的な文献調査からは、既に少なくとも196種類のヒトタンパク質がキネトコアへの局在が実験的に示されていることが明らかにされた[35]
機能

1つのキネトコアに対して接着する微小管の数はさまざまであり、出芽酵母では各キネトコアに1本の微小管が接着するだけであるが、哺乳類では各キネトコアに15?35本の微小管が接着する[36]。しかしながら、紡錘体の全ての微小管が1つのキネトコアに接着するのではない。1つの中心体から他の中心体へ伸びる微小管もあり、これらは紡錘体の長さを決定している。一部の短い微小管は長い微小管の間を結合している。微小管-キネトコア間の接着をレーザーによって切断すると、染色分体は移動することができず、異常な染色体分配が引き起こされる[37]。またこうした実験により、キネトコアには極性が存在し、キネトコアがどちらの中心体から伸びてきた微小管に接着するかはキネトコアの向きに依存していることが示された。この特異性により、各紡錘体極へ1つの染色分体だけが移動することが保証され、遺伝物質の正しい分配が保証されている。このように、キネトコアの基本的な機能の1つは紡錘体への接着であり、この過程は姉妹染色体の適切な分離に必要不可欠である。固定が不正確であった場合はエラーが生じ、染色体の異数性によって細胞には破滅的な結果が引き起こされる。これを防ぐため、エラーを検出して修正する機構が存在し、その構成要素はキネトコア上にも位置している。1つの染色分体が中心体へ向かう運動は主にキネトコアとの結合部位での微小管の脱重合によって生み出される。こうした運動には力の産生も必要であり、同様にキネトコア上に位置している分子モーターが関与している。
紡錘体微小管への染色体の固定
微小管の捕捉染色体は紡錘体の双方の極からの微小管と結合する。

細胞周期のS期の間、中心体は複製を開始する。有糸分裂の開始段階には、各中心体の双方の中心小体の長さは最大となり、中心体はさらなる物質をリクルートして微小管の核形成能力が増大する。有糸分裂が進行するにつれて、紡錘体を形成するために双方の中心体は分離する[38]。このようにして、有糸分裂を行う細胞の紡錘体には微小管が伸びる2つの極が存在するようになる。微小管は非対称的な末端を持つ長いタンパク質性の繊維である。(?)端は比較的安定で中心体に隣接しており、(+)端は伸長と短縮を交互に繰り返しながら細胞の中心部を探索する。この探索過程で、微小管は染色体と遭遇し、キネトコアを介して捕捉する[39][40]。キネトコアを発見し接着した微小管は安定化されるが、遊離したままの微小管は迅速に脱重合される[41]。染色体には2つのキネトコアが背中合わせに(各姉妹染色分体に1つずつ)結合しているため、一方のキネトコアが1つの極から形成された微小管と接着すると、姉妹染色分体に存在する他方のキネトコアは反対側の極を向くこととなる。そのためほとんどの場合、2つ目のキネトコアは反対側の極から伸びてきた微小管と結合する[42]。このようにして染色体は二方向性(bi-oriented)またはアンフィテリック(amphitelic)と呼ばれる状態となり、この基本的配置によって細胞が分裂した際の双方の染色分体の適切な分離が保証される[43][44]前中期と後期の間の細胞周期の進行の模式図。前中期に染色体は紡錘体に結合し、中期に染色体は中期板上に集合する。後期に姉妹染色分体は分離するが、後期への進行はスピンドルチェックポイントの活性化によって防止される。染色体が青、キネトコアが薄黄で示されている。

1つのキネトコアに1つの微小管が固定されると、結合した染色体が極に向かう運動が迅速に開始される。この運動はおそらく、微小管に固定されていないキネトコアに濃縮されて存在しているモータータンパク質ダイニンが(?)端へ向かう運動によって媒介されている[45][46][47]。ダイニンはキネトコア微小管(キネトコアに固定された微小管)が結合すると放出される[26]。極へ向かう運動はキネトコアにキネトコア微小管が結合している限り緩やかなものとなり、運動はキネトコア微小管の長さの変化によって行われるようになる。培養哺乳類細胞では、ダイニンはスピンドルチェックポイントの不活性化には必要であるが、紡錘体の赤道面への集合やキネトコア微小管の獲得、後期の染色体分離には不要である[48]。高等植物や酵母にダイニンが存在する証拠はないが、(?)端へ向かう他のキネシンがダイニンの不在を補っていると考えられている。RNAiによってCENP-Eのレベルが低下した中期の細胞。中期板に整列していない染色体が矢印で示されている。染色体は有糸分裂チェックポイントタンパク質Mad1/Mad2に対する抗体によってラベリングされている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:116 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef