共有結合
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

分子軌道に対する原子軌道の線形結合(LCAO)近似は1929年にジョン・レナード=ジョーンズによって発表された[19]。原子軌道の線形結合(LCAO)は分子の構成原子間の結合の上に形成される分子軌道を推定するために使うことができる。原子軌道と同様に、電子の挙動を記述するシュレーディンガー方程式は分子軌道についても構築することができる。原子軌道の線形結合、あるいは原子波動関数の和および差は、分子のシュレーディンガー方程式の独立粒子近似に対応するハートリー=フォック方程式への近似解を与える。

原子軌道が相互作用する時、得られる分子軌道は、結合性、反結合性非結合性の3種類のどれかである。
結合性MO


原子軌道間の結合性相互作用は構成的(同相)な相互作用である。

結合性MOはそれらを生成するために混合される原子軌道よりもエネルギー的に低い。

反結合性MO


原子軌道間の反結合性相互作用は破壊的(異相)な相互作用であり、2つの相互作用している原子間に反結合性軌道の波動関数がゼロになる節面を持つ。

反結合性MOはそれらを生成するために混合される原子軌道よりもエネルギー的に高い。

非結合性MO


非結合性MOは適合対称性の欠如のために原子軌道間の相互作用が起こらないことの結果である。

非結合性MOは分子内の原子の1つの原子軌道と同じエネルギーを持つ。

比較

2つの理論は、分子の電子配置を作り上げる順序が異なっている[20]。原子価結合理論では、原子の混成軌道が最初に埋められ、結合性電子対と孤立電子対の完全原子価配置が作られる。もしいくつかのそういった配置が存在するならば、これらの配置の重み付けされた重ね合わせが次に適用される。対照的に、分子軌道理論では、原子軌道の重み付けされた重ね合わせが最初に実行され、次に得られた分子軌道を増成原理によって電子で埋めていく。

どちらの理論も利点と用途を持つ。原子価結合理論は局在化した結合の分子波動関数を構築するため、結合エネルギーの計算と反応機構の理解のためにより適している。特に、原子価結合理論は等核二原子分子の個別の原子への解離を正しく予測するのに対して、単純な分子軌道理論は原子とイオンの混合状態への解離を予測する。分子の対称性に従う非局在化軌道を持つ分子軌道理論は、イオン化エネルギーの計算やスペクトルの吸収バンドの理解により適している。分子軌道は直交しているため、直交していない原子価結合軌道と比較してコンピュータによる計算の実現可能性と速度を大いに高める。

両方の理論によって生成された波動関数は一致せず、また実験による安定化エネルギーとはどちらも一致しないが、配置間相互作用によって補正することができる[20]。これは、原子価結合共有結合性関数と全ての可能なイオン性配置を記述する関数とを混合することによって、あるいは分子軌道基底状態関数と非占有軌道を使った全ての可能な励起状態を記述する関数とを混合することによって行われる。単純な分子軌道手法はイオン性構造に重きを置き過ぎているのに対して、単純な原子価結合手法は軽んじ過ぎている。これは、分子軌道法が電子相関を無視しているのに対して、原子価結合法は過大評価していると説明することもできる[20]

現在これら2つの手法は相補的であると見なされており、それぞれが化学結合の問題を理解する上での独自の手掛かりとなっている。量子化学における現代の計算は大抵は原子価結合の手法ではなく分子軌道の手法から始まる(しかし最終的には分子軌道法から大きくそれる)。これは後者の手法がそれ自体優れているためではなく、単に分子軌道法の方が数値計算に適用しやすいためである。しかしながら、現在ではより良い原子価結合プログラムも利用できるようになっている。
脚注[脚注の使い方]
注釈^ 等極結合(とうきょくけつごう、(: homopolar bond)ともいう。

出典^ covalent bond - IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: ⇒http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook.C01384.
^ March, Jerry (1992). Advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons. .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}ISBN 0-471-60180-2 
^ Gary L. Miessler; Donald Arthur Tarr (2004). Inorganic chemistry. Prentice Hall. ISBN 0-13-035471-6 
^ Merriam-Webster ? Collegiate Dictionary (2000).
^ “ ⇒Chemical Bonds”. Hyperphysics.phy-astr.gsu.edu. 2013年6月9日閲覧。
^ Langmuir, Irving (1919-06-01). “The Arrangement of Electrons in Atoms and Molecules”. Journal of the American Chemical Society 41 (6): 868?934. doi:10.1021/ja02227a002. 
^ Lewis, Gilbert N. (1916-04-01). “The atom and the molecule”. Journal of the American Chemical Society 38 (4): 762?785. doi:10.1021/ja02261a002. 
^ W. Heitler and F. London, Zeitschrift fur Physik, vol. 44, p. 455 (1927). English translation in Hettema, H. (2000). Quantum chemistry: classic scientific papers. World Scientific. pp. 140?. ISBN 978-981-02-2771-5. https://books.google.com/?id=qsidHRJmUoIC 2012年2月5日閲覧。 
^ Stranks, D. R.; Heffernan, M. L.; Lee Dow, K. C.; McTigue, P. T.; Withers, G. R. A. (1970). Chemistry: A structural view. Carlton, Victoria: Melbourne University Press. p. 184. ISBN 0-522-83988-6 
^ Weinhold, F. and Landis, C. (2005). Valency and bonding. Cambridge. pp. 96?100. ISBN 0-521-83128-8 
^ a b Pauling, L. (1960) The Nature of the Chemical Bond. Cornell University Press. p.340-354
^ Cammarata, Antonio; Rondinelli, James M. (21 September 2014). “Covalent dependence of octahedral rotations in orthorhombic perovskite oxides”. The Journal of Chemical Physics 141 (11): 114704. doi:10.1063/1.4895967. 
^ F. Hund (1926). “Zur Deutung einiger Erscheinungen in den Molekelspektren" [On the interpretation of some phenomena in molecular spectra]”. Zeitschrift fur Physik 36: 657-674. 
^ F. Hund (1927). “Zur Deutung der Molekelspektren: Part I”. Zeitschrift fur Physik 40: 742-764. ; Part II, (1927) 42, 93?120; Part III, (1927), 43, 805-826; Part IV, (1928), 51, 759-795; Part V, (1930), 63, 719-751.
^ R. S. Mulliken (1927). “Electronic states. IV. Hund's theory; second positive nitrogen and Swan bands; alternate intensities”. Physical Review 29: 637?649. doi:10.1103/PhysRev.29.637. 
^ R. S. Mulliken (1928). “The assignment of quantum numbers for electrons in molecules”. Physical Review 32: 186?222. doi:10.1103/PhysRev.32.186. 
^ Werner Kutzelnigg (1996). “Friedrich Hund and Chemistry”. Angewandte Chemie International Edition 35: 573?586. doi:10.1002/anie.199605721. 
^ Mulliken, Robert S. (1967). “Spectroscopy, Molecular Orbitals, and Chemical Bonding”. Science 157 (3784): 13-24. doi:10.1126/science.157.3784.13. https://web.archive.org/web/20141112210044/http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1966/mulliken-lecture.pdf. 
^ Lennard-Jones. J. E. (1929). “The electronic structure of some diatomic molecules”. Transactions of the Faraday Society 25: 668-686. doi:10.1039/TF9292500668. 


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:43 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef