二項展開
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

1665年ごろアイザック・ニュートンは従来の二項定理を一般化して非整数冪に対する公式(ニュートンの一般二項定理)を得た[13]。この一般化において、有限和は級数になる。また、二項係数 (n
k) の上の添字 n は自然数とは限らないから、二項係数を階乗を用いて表すこともできない。一般化された二項係数を任意の数 r に対して ( r k ) = r ( r − 1 ) ⋯ ( r − k + 1 ) k ! = ( r ) k k ! {\displaystyle {\binom {r}{k}}={\frac {r\,(r-1)\cdots (r-k+1)}{k!}}={\frac {(r)_{k}}{k!}}} (1)

で定義する。右辺の (•)k はポッホハマー記号で、ここでは下方階乗を表す。このとき実数 x, y が |x| > |y| を満たすとき[注 2]、任意の複素数 r に対して ( x + y ) r = ∑ k = 0 ∞ ( r k ) x r − k y k = x r + r x r − 1 y + r ( r − 1 ) 2 ! x r − 2 y 2 + r ( r − 1 ) ( r − 2 ) 3 ! x r − 3 y 3 + ⋯ {\displaystyle {\begin{aligned}(x+y)^{r}&=\textstyle \sum \limits _{k=0}^{\infty }{\dbinom {r}{k}}x^{r-k}y^{k}\\&=x^{r}+rx^{r-1}y+{\frac {r(r-1)}{2!}}x^{r-2}y^{2}+{\frac {r(r-1)(r-2)}{3!}}x^{r-3}y^{3}+\dotsb \end{aligned}}} (2)

が成り立つ。r が非負整数のとき、k > r に対する二項係数は零であるから等式 (2) は等式 (1) に特殊化され、非零項は高々 r + 1個である。r がそれ以外の値のときは級数 (2) は(少なくとも x, y が非零のとき)無数の非零項を持つ。

これは級数を扱っていてそれを一般化超幾何函数(英語版)で表そうとするときに重要である。

r = −s と置けば有用な等式 1 ( 1 − x ) s = ∑ k = 0 ∞ ( s + k − 1 k ) x k ≡ ∑ k = 0 ∞ ( s + k − 1 s − 1 ) x k {\displaystyle {\frac {1}{(1-x)^{s}}}=\textstyle \sum \limits _{k=0}^{\infty }{\dbinom {s+k-1}{k}}x^{k}\equiv \textstyle \sum \limits _{k=0}^{\infty }{\dbinom {s+k-1}{s-1}}x^{k}}

を得る。これをさらに s = 1 と特殊化すれば等比級数を得る。

式 (2) は x, y が複素数の場合にも一般化することができる。この場合、|x| > |y|[注 2]に加えて、x を中心とする半径 |x| の開円板上で定義されたlog正則な枝を用いて x + y および x の冪を定義しなければならない。式 (2) は x, y がバナッハ環の元であるときも、xy = yx かつ x が可逆で ‖ y/x ‖ < 1 である限り成り立つ。
多項定理詳細は「多項定理」および「多項係数」を参照

二項定理は三項以上の和の冪展開に拡張することができる: ( x 1 + x 2 + ⋯ + x m ) n = ∑ k 1 + k 2 + ⋯ + k m = n ( n k 1 , k 2 , … , k m ) x 1 k 1 x 2 k 2 ⋯ x m k m {\displaystyle (x_{1}+x_{2}+\cdots +x_{m})^{n}=\textstyle \sum \limits _{k_{1}+k_{2}+\cdots +k_{m}=n}{\dbinom {n}{k_{1},k_{2},\ldots ,k_{m}}}{x_{1}}^{k_{1}}{x_{2}}^{k_{2}}\cdots {x_{m}}^{k_{m}}}

ここで和は、非負整数列 k1, …, km の総和が n であるもの全体に亙って取るから、右辺の展開式は項の次数が何れも n次である斉次多項式である。展開式の係数 (n
k1, …, km) は多項係数と呼ばれ、 ( n k 1 , k 2 , … , k m ) = n ! k 1 ! k 2 ! ⋯ k m ! {\displaystyle {\binom {n}{k_{1},k_{2},\ldots ,k_{m}}}={\frac {n!}{k_{1}!\,k_{2}!\cdots k_{m}!}}}

となる。組合せ論的には、多項係数 (n
k1, …, km) は、n元-集合を各位数が k1, …, km となる、互いに素な部分集合へ分割する場合の数となる。
多重二項定理

二項式の総乗といった、より次元の高いものを取り扱う場合にも二項定理はしばしば有用である。二項定理により等式 ( x 1 + y 1 ) n 1 ⋯ ( x d + y d ) n d = ∑ k 1 = 0 n 1 ⋯ ∑ k d = 0 n d ( n 1 k 1 ) x 1 k 1 y 1 n 1 − k 1 ⋯ ( n d k d ) x d k d y d n d − k d {\displaystyle (x_{1}+y_{1})^{n_{1}}\cdots (x_{d}+y_{d})^{n_{d}}=\textstyle \sum \limits _{k_{1}=0}^{n_{1}}\cdots \sum \limits _{k_{d}=0}^{n_{d}}{\dbinom {n_{1}}{k_{1}}}\,{x_{1}}^{k_{1}}{y_{1}}^{n_{1}-k_{1}}\;\cdots \;{\dbinom {n_{d}}{k_{d}}}\,{x_{d}}^{k_{d}}{y_{d}}^{n_{d}-k_{d}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:88 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef