二項展開
[Wikipedia|▼Menu]
x0 = y0 :=1[注 1]と定義すれば、全ての項を総和記号 Σ で一律に表示できる: ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k = ∑ k = 0 n ( n k ) x k y n − k {\displaystyle (x+y)^{n}=\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{n-k}y^{k}=\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{k}y^{n-k}} (2)

最後の等号は、x, y についての対称性と、二項係数の列の対称性により得られる。

二項公式を簡略化した一変数版もよく知られる: ( 1 + x ) n = ( n 0 ) + ( n 1 ) x 1 + ( n 2 ) x 2 + ⋯ + ( n n − 1 ) x n − 1 + ( n n ) x n = ∑ k = 0 n ( n k ) x k . {\displaystyle (1+x)^{n}={\binom {n}{0}}+{\binom {n}{1}}x^{1}+{\binom {n}{2}}x^{2}+\cdots +{\binom {n}{n-1}}x^{n-1}+{\binom {n}{n}}x^{n}=\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{k}.}

逆に、二項定理の一変数版からもとの二項定理を、指数法則などの基本的な計算法則により導くことができる[10]



(1) は、可換環において成り立つ。

(2) は、可換環がさらに単位的環があるとき成り立つ。このとき、項 (n
k) xn−k yk は環の元の積 xn−kyk の整数 (n
k) によるスカラー倍である。つまりここでは環を Z-加群と見做している。

必ずしも可換でない一般の単位的環においても、x と y が可換である(つまり xy = yx を満たす)ならば、二項定理は成り立つ。

定理の主張を、多項式列 {1, x, x2, …} は二項型であると述べることもできる。
証明
帰納的証明

数学的帰納法とパスカルの法則(英語版)により、簡単に証明できる。
n = 0
( x + y ) 0 = 1 = ( 0 0 ) x 0 y 0 {\displaystyle (x+y)^{0}=1={\binom {0}{0}}x^{0}y^{0}}

により成り立つ。

以下、非負整数 n に関する帰納法で示す。

ある n について成り立つと仮定する。 ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k {\displaystyle (x+y)^{n}=\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{n-k}y^{k}}

より、 ( x + y ) n + 1 = ( x + y ) ( x + y ) n = ( x + y )   ∑ k = 0 n ( n k ) x n − k y k = x ∑ k = 0 n ( n k ) x n − k y k + y ∑ k = 0 n ( n k ) x n − k y k = ∑ k = 0 n ( n k ) x ( n + 1 ) − k y k + ∑ k = 0 n ( n k ) x n − k y k + 1 = ∑ k = 0 n + 1 ( n k ) x ( n + 1 ) − k y k + ∑ k = 0 n + 1 ( n k − 1 ) x ( n + 1 ) − k y k ( ∵ ( n n + 1 ) = ( n − 1 ) = 0 ) = ∑ k = 0 n + 1 [ ( n k ) + ( n k − 1 ) ] x ( n + 1 ) − k y k {\displaystyle {\begin{aligned}(x+y)^{n+1}&=(x+y)(x+y)^{n}\\&=(x+y)~\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{n-k}y^{k}\\&=x\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{n-k}y^{k}+y\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{n-k}y^{k}\\&=\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{(n+1)-k}y^{k}+\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{n-k}y^{k+1}\\&=\textstyle \sum \limits _{k=0}^{n+1}{\dbinom {n}{k}}x^{(n+1)-k}y^{k}+\textstyle \sum \limits _{k=0}^{n+1}{\dbinom {n}{k-1}}x^{(n+1)-k}y^{k}\\\left(\because {\binom {n}{n+1}}={\binom {n}{-1}}=0\right)\\&=\textstyle \sum \limits _{k=0}^{n+1}\left\lbrack {\dbinom {n}{k}}+{\dbinom {n}{k-1}}\right\rbrack x^{(n+1)-k}y^{k}\end{aligned}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:88 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef