二項分布
[Wikipedia|▼Menu]
二項分布の近似として、以下の小節に挙げる分布などが知られている。近似を用いることで計算の労力を削減できるという利点がある一方、各近似にはそれを適用可能とするための条件が存在する。そのため、それらの条件や近似を用いることで生じる誤差が許容可能な範囲内に収まっていることの確認が必要となる。特に、二項分布の母比率の信頼区間を求める際には、用いる近似と変数の値の組み合わせにより、厳密に求められた信頼区間との間に近似誤差が生じることになるため注意が必要である[5]
正規分布.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この節の内容の信頼性について検証が求められています
確認のための文献や情報源をご存じの方はご提示ください。出典を明記し、記事の信頼性を高めるためにご協力をお願いします。
二項分布が正規分布に近づく様子

期待値 np および分散 np(1 − p) が 5 よりも大きい場合、二項分布 B(n, p) に対する良好な近似として正規分布がある。ただし、この近似を適用するにあたっては、変数のスケールに注意し、連続な分布への適切な処理がなされる必要がある。より厳密に述べれば、n が十分大きくかつ、期待値 np および 分散 np(1 − p) も十分大きい場合、期待値 np, 分散 np(1 − p) の正規分布 N(np, np(1 − p)) で近似することができ、期待値からの差 |k − np| が標準偏差 n p ( 1 − p ) {\textstyle {\sqrt {np(1-p)}}} と同程度となる k に対して P [ X = k ] ≃ 1 2 π n p ( 1 − p ) exp ⁡ ( − ( k − n p ) 2 2 n p ( 1 − p ) ) {\displaystyle P[X=k]\simeq {\frac {1}{\sqrt {2\pi np(1-p)}}}\exp {\biggl (}-{\frac {(k-np)^{2}}{2np(1-p)}}{\biggr )}}

が漸近的に成り立つ。二項分布が一定の条件下で正規分布に近づく、この近似式は数学者アブラーム・ド・モアブルが1733年に著書 The Doctrine of Chances の中で紹介したのが最初であり、ド・モアブル=ラプラスの極限定理またはラプラスの定理と呼ぶことがある[6]。これは、今日でいうところの中心極限定理の特別な場合に相当する。この正規分布への近似と標準正規分布表により、計算の労力を大きく削減することができる。

例えば、多数の住民の中から n 人を無作為に抽出し、ある質問について同意するかどうかを尋ねる場合を考える。同意する人数の割合は、もちろんサンプルに依存する。n 人を無作為に抽出する作業を何度も繰り返し行うとき、同意する人々の割合の分布は、実際の全住民の合意割合 p とほぼ等しい平均を持ち、標準偏差 σ = p ( 1 − p ) / n {\textstyle \sigma ={\sqrt {p(1-p)/n}}} である正規分布に近似される。未知の変数 p は、標準偏差が小さいほど正確な推定が可能である。そのため、抽出する人数 n は多い方が好ましい。

95%信頼区間ならば、正規分布で近似すると、その範囲は p − 1.959964 p ( 1 − p ) n ∼ p + 1.959964 p ( 1 − p ) n {\displaystyle p-1.959964{\sqrt {\frac {p(1-p)}{n}}}\sim p+1.959964{\sqrt {\frac {p(1-p)}{n}}}}

となる。たとえば、p = 50% の場合、n = 100 なら40%?60%、n = 1000 ならば47%?53%、n = 10000 ならば49%?51%となる。n = 10 の場合、正規分布近似ではなく、本来の定義に従って計算すると、89%信頼区間で、30%?70%となる[7]
ポアソン分布

n が大きく p が十分小さい場合、np は適度な大きさとなるため、λ = np を母数とするポアソン分布が二項分布 B(n, p) の良好な近似を与える。すなわち、n が十分大きいとき、期待値 λ = np とおくと、 P [ X = k ] ≃ λ k e − λ k ! {\displaystyle P[X=k]\simeq {\frac {\lambda ^{k}e^{-\lambda }}{k!}}}

が成り立つ(詳細はポアソン分布の項を参照)。この結果は数学者シメオン・ドニ・ポアソンが1837年に著書 Recherches sur la probabilite des jugements (Researches on the Probabilities) の中で与えており、ポアソンの極限定理と呼ばれる。
出典[脚注の使い方]^ 藪 2012, p. 144.
^ 藪 2012, pp. 144?145.
^ Johnson, Kotz & Kemp 2005, p. 110, (3.6).
^ Johnson, Kotz & Kemp 2005, p. 109.


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:66 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef