リチウムイオン二次電池
[Wikipedia|▼Menu]
1976年、ベーゼンハルトはリチウム電池での応用を提案した[16][17](ただし、黒鉛が層間にアルカリ金属などを取り込み黒鉛層間化合物(英語版)をつくることは1926年から知られていた)。

1978 - 1979年、ペンシルベニア大学のSamar Basuは、黒鉛内でのリチウムイオンの電気化学的インターカレーションを実証した[18][19]

しかし、負極に黒鉛を用いると、当時の一般的な電解液であるプロピレンカーボネート(金属リチウム電池に使われている)を始めとするほとんどの有機物は負極側で分解してしまう[20]ため、有機電解液を用いて炭素系材料にリチウムイオンを安定して電気化学的にインターカレーションさせることは困難と考えられていた。つまり負極に黒鉛を使う二次電池は実用化が困難とされていた。

1980年、オックスフォード大学ジョン・グッドイナフ水島公一らはリチウムと酸化コバルトの化合物であるコバルト酸リチウム (LiCoO2) などのリチウム遷移金属酸化物を正極材料として提案した[21][22]。これがリチウムイオン二次電池の正極の起源である。

1981年、三洋電機から黒鉛炭素質を負極材料とする二次電池の特許が出願された[23][24][25]

1982年、ラシド・ヤザミ(英語版)らは固体電解質を用いて黒鉛内にリチウムイオンを電気化学的にインターカレーションさせることを実証した[26][27]

一方、当時京都大学山邊時雄らの量子化学的設計に基づいて提唱されたポリアセン高分子型炭素材料[28]が、一次元グラファイトの名のもとに注目を集め、その作成がいろいろな所で試みられた。これに応えて1981年、カネボウの矢田静邦が、安定な難黒鉛化炭素の一種であるポリアセン系有機半導体(PAS)を作成し[29]、これを用いて2種類のバッテリーが開発され、いずれも実用化された。一つは双方ともにPASを用いたキャパシタ的電池(PAS電池)、もう一つは負極にLiイオンをあらかじめドーピングしたPASを用いたもの(リチウムイオンキャパシタ)である。後者は、正極はキャパシタと同様に、負極はリチウムイオン電池と同様に作動する。このように、PASによって炭素材でもスムーズで安定なLiドープ、脱ドープが可能であることが初めて見出され、これを機に電気化学的に安定なドープ、脱ドープが可能な難黒鉛化から易黒鉛化を含む電極用炭素材料の開発が方々でなされることとなった[30]

1983年、マイケル・メイクピース・サッカレー(英語版)とジョン・グッドイナフらは、スピネル構造を有するマンガン酸リチウム(LiMn2O4)を正極材料として紹介した[31]。コバルト酸リチウムと比較して安価で安全という特徴がある。1996年に正極材料として実用化され、コバルト酸リチウムと同様に一般的に使われている。

1986年、カナダのMoli Energy(英語版)により、正極に硫化モリブデン、負極に金属リチウムを使用した金属リチウム二次電池が製品化されたが、金属リチウムの化学活性がきわめて高いため、可逆性(充電の過程で負極にリチウムのデンドライトが析出・成長してそれが正極に接して短絡する危険性)や反応性(ほんの少しでも水分に触れると激しく発熱して水素ガスを発生させて発火する危険性)に問題があった。1989年にはNTTのショルダー型携帯電話などで発火事故が相次ぎ[32]、実用化されたとは言いがたく、金属リチウムを負極に使った一次電池は市販化されているが、二次電池への応用は危険とされ広く用いられることはなかった。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:155 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef