ボイジャー2号
[Wikipedia|▼Menu]
ボイジャー2号の惑星探査ミッションは終了したため、現在ボイジャー2号は太陽圏を越えた領域を探査する星間空間ミッションとしてNASAによって運用されており、2012年に近くの星間空間のプラズマの温度を測定し、太陽圏内のプラズマよりも低温であることや、太陽圏を出る直前にプラズマ密度のわずかな増加を確認していたことなどから、現在は原因調査のため星間プラズマの密度と温度を測定している[9]2018年11月11日ボイジャー2号は太陽から約178億1320万km (119.07au)の距離にあり[10]、太陽との相対速度で15.341km/s (3.236 au/年)の速さで太陽圏から脱出しつつある。ボイジャー1号と同様、特定の恒星を目指して飛行しているわけではないが、約6万1000年後にオールトの雲を通過し、約29万8000年後にシリウスから約4光年まで接近するとされている[11]。2020年10月18日現在ボイジャー2号は太陽から約150au(224 億 km)の地点で慣性飛行を続けている。

2010年4月22日、ボイジャー2号から地球に送信されたデータが読み取り不可能な状態になっていることが発見された。5月1日にはその原因が観測したデータを地球に送信するためのフォーマットに変換するシステムに異常があるためと判明した[12]。NASAはボイジャー2号のコンピューターを5月19日にリセットし、23日にはデータが正常に送信されていることを確認した[13]

ボイジャー2号は、ボイジャー1号と共に、太陽系の外から来る紫外線の波長域の1つライマンα線を観測している。その中には、地球からの観測では知られていなかった線源も含まれている。ライマンα線は、地球からの観測では、星間物質に散乱される太陽放射のせいでうまく捕らえることができないものである。

2018年11月5日、ボイジャー2号がボイジャー1号に次いで太陽圏を離脱したことが同年12月10日に発表された[8]。翌年の2019年11月4日には、ボイジャー2号に搭載された磁場センサーやエネルギー粒子観測装置、プラズマ観測装置等の5つの機器から得られたデータを基にした研究から、ボイジャー2号が太陽圏と星間空間の間の遷移領域を航行していることが発表された[14]

ボイジャー2号は、重大な不具合がなければ2025年頃までは運用が保てるものと考えられ、それ以降は電力や燃料の残量次第である[15]。当初は太陽センサーの感度がより早い段階で不足するものと思われたが、2019年にその制約はないことが判明し、ボイジャー2号が太陽の位置情報を再取得できなくなるのは2027年と見込まれている[16][注 1]。2023年4月には電源変動対策のための予備電力をも投入する形で、電力低下による観測機器のシャットダウン回避に成功。2026年まで惑星間空間探査を継続できる見通しが立った[17]

2023年8月1日、信号送信のミスによりアンテナが地球から離れた方向に向いたため、通信が遮断されたことを発表した。なお、NASAは同年10月15日頃にアンテナの向きがリセットされるため通信が再開できる見込みであるとしていたが[18][19]、アンテナを正常な方向に戻すための信号を送るなど対応を行った結果、同月4日に通信の復旧が確認された[20]

ボイジャー2号の現在位置[21]日付太陽からの距離
(億km)太陽との相対速度
(km/s)
1996年01月05日71.3916.060
1997年01月03日75.8515.987
1998年01月02日80.3515.921
1999年01月01日84.8715.862
2000年01月07日89.5215.811
2001年01月12日94.2015.766
2002年01月04日98.7215.729
2003年01月03日103.3515.696
2004年01月02日108.0015.666
2005年01月07日112.7515.635
2006年01月06日117.4315.606
2007年01月05日122.1115.577
2008年01月04日126.8015.550
2009年01月02日131.4915.520
2010年01月01日136.1915.493
2011年01月07日140.9915.469
2012年01月06日145.6915.449
2013年01月04日150.4015.433
2014年01月03日155.1215.420
2015年01月16日160.0215.497
2016年12月29日169.2715.396
2022年08月28日195.2715.199

脚注[脚注の使い方]

注釈^ ボイジャーは、太陽とりゅうこつ座α星(カノープス)の位置を参照し、これを基準として地球の方向を計算し交信用の高利得アンテナを地球に向け続けている。 しかし、探査機が太陽から離れるにつれセンサーの感度が不足し、いずれ地球の方向が計算できなくなるものと思われていた。ところが、これはおそらく文書の記載ミスが原因で、実際にはそのような制約は受けず、加えて太陽センサーの感度を上げることも可能であること、さらにはカノープス・センサーも当初の想定より劣化が進んでいないことが分かった[16]

出典^ “VOYAGER:Mission Information”. NASA. 2018年12月11日閲覧。
^ “Voyager 2”. US National Space Science Data Center. 2018年12月11日閲覧。
^ “VOYAGER 2”. N2YO. 2018年12月11日閲覧。
^ Butrica, Andrew. From Engineering Science to Big Science. p. 267. https://history.nasa.gov/SP-4219/Chapter11.html 2015年9月4日閲覧. "Despite the name change, Voyager remained in many ways the Grand Tour concept, though certainly not the Grand Tour (TOPS) spacecraft. Voyager 2 was launched on August 20, 1977, followed by Voyager 1 on September 5, 1977. The decision to reverse the order of launch had to do with keeping open the possibility of carrying out the Grand Tour mission to Uranus, Neptune, and beyond. Voyager 2, if boosted by the maximum performance from the Titan-Centaur, could just barely catch the old Grand Tour trajectory and encounter Uranus. Two weeks later, Voyager 1 would leave on an easier and much faster trajectory, visiting Jupiter and Saturn only. Voyager 1 would arrive at Jupiter four months ahead of Voyager 2, then arrive at Saturn nine months earlier. Hence, the second spacecraft launched was Voyager 1, not Voyager 2. The two Voyagers would arrive at Saturn nine months apart, so that if Voyager 1 failed to achieve its Saturn objectives, for whatever reason, Voyager 2 still could be retargeted to achieve them, though at the expense of any subsequent Uranus or Neptune encounter." 
^ a b “Mission Status”. California Institute of Technology. Jet Propulsion Laboratory. 2018年12月11日閲覧。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:36 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef