ヒートアイランド
[Wikipedia|▼Menu]
なお、平均値を示した右表とは異なる年間最大値ではあるが、北アメリカや日本の研究報告では人口数千人から数万人程度の都市・集落でも郊外との気温差は最大時で2 - 7℃ほどあるとされている[1][8]

研究初期、Chandler(1967)は規模の異なる2都市での観測から都市の規模よりも建物の密度の方が重要な因子であるとしたが、Oke(1973)は別の観測から都市の人口とヒートアイランドの強度は対数比例の関係にあるとし、Chandlerの説を覆した。後の複数の研究でも、きれいな対数比例にならないとする研究もあるものの、多くは都市の人口規模がヒートアイランドの強度と関係していることを示している[1]

ここからは主に日本の例を解説する。観測データを基にした気象庁の調査では、東京を中心とする都市圏と内陸側の都市(前橋熊谷など)、京阪神名古屋内陸側の都市(岐阜など)、札幌仙台福岡が顕著な例として挙げられている。右表がその値であるが、主要都市は軒並み郊外に比べて顕著な気温の上昇を観測している[参 6]

留意すべき点として、気温の上がり方は夏や昼間よりも夜間や冬場の方が著しいことが挙げられる。顕著な影響として熱中症の増加がみられることから夏の最高気温が高くなるイメージがもたれやすいが、それとは逆の傾向である。右表では夏の最高気温は1 - 2℃の上昇にとどまる一方で、夏の最低気温は2 - 4℃上昇しており、夜間の涼しさの方が弱くなる。つまり、真夏日よりも熱帯夜の増加が著しい[9]。またどの都市でも、夏季よりも冬季のほうが差が大きく現れ、特に高緯度の寒冷地では顕著である[参 6]

例えば、東京では1920年代は年間70日程度観測されていた冬日2000年代には年間数日程度に激減し、同じく熱帯夜の日数は3倍以上に増加している。ちなみに東京での熱帯夜は、観測史上最も暑い夏になった2010年が最多で56日、次いで2011年2012年が49日を数え、平年の27.8日を大きく上回っている。真夏日に関しても2010年(平成22年)が最も多く、71日に達した(平年は48.5日)。一方で冬日は、寒冬になった2006年、2012年でさえそれぞれ、9日と6日にしかならなかった。記録的な暖冬になった1989年、1993年2004年2009年は1日も観測されなかった[10]。冬季の気温差が大きい例としては札幌、旭川帯広などの北海道内陸部の主要都市が挙げられ、厳冬期の朝に郊外との気温差が10度前後になることも珍しくない。

また、風上にある都市のヒートアイランドの影響を受けて、周辺の郊外部や遠い内陸部に高温化が及ぶことがある。典型的な例として、海陸風が内陸に及ぶ関東平野濃尾平野が挙げられる。右表にもある通り熊谷市、前橋市、岐阜市では夏の最高気温が2 - 3℃上昇しており、上昇幅は東京や名古屋と同程度あるいは上回っている。なお、熊谷市や岐阜県多治見市では2007年8月16日に日本の観測史上最高気温を記録したが、このときはフェーン現象による影響が大きく、ヒートアイランドの寄与は熊谷市で1℃程度と解析されている。一方で、冬は都市部の方が気温の上昇幅が大きく[参 6][参 7]、夏は南東・冬は北西と向きが変わる季節風の影響があると考えられる。

このほか、都市内にある公園緑地は気温の上昇幅が小さい冷気だまり、いわゆる「クールアイランド」になることも分かっている。例えば皇居では夏の平均気温が周辺よりも約2℃低いという観測結果が発表されている[11]
影響について

ヒートアイランドの主な影響を以下に挙げる。主なものとして熱中症の増大や大気汚染の悪化などが挙げられるが、エネルギー消費の面では冷房使用が増加する一方暖房使用が減少するという2つの側面がある。
夏季の高温による人体への影響

熱中症の危険性増大
真夏日・夏日・熱帯夜の日数が増加するほど、熱中症による救急搬送者数や死亡者数は増加する。一例として東京都内の熱中症による年間救急搬送者数は、1980年代後半は150人前後だったものが1990年代後半に300人前後に倍増、2000年代には500人以上を推移し、年によっては1,000人以上にのぼる。なお、年齢別では子供高齢者が多い傾向にあり、高齢者は室内で熱中症となり救急搬送される例も少なくない[参 8][7]。ただし、こうした影響のインパクトは都市の緯度によって異なる。アメリカでは、ニューヨークやシカゴなど高緯度の都市では高温と死亡率に有意な相関が認められる一方、マイアミなど低緯度の都市では相関性が低いという報告がある[12]
不快感の増大
環境省の2009年の調査によれば、夜間の気温(最低気温)が高くなるほど睡眠中に目覚める人が多くなる傾向にあり、睡眠の質を悪化させたり冷房使用の増大を招くといった影響が考えられる[参 9]
エネルギー消費の増加
夏季は気温が高くなるほど、冷房を中心とした電力需要が増加する。2002年時点のデータによると、東京電力管内では夏季(梅雨明けから9月初めまで)の気温が1℃上昇すると電力需要は約166万kwh増加する(この値を「気温感応度」という)とされ、これをピーク追従に適した火力発電とすれば二酸化炭素排出量が593トン増加、この規模の発電設備を増設すると石油火力発電では3,000億円以上のコストになるという。なお、先のデータは14時頃のものだが気温感応度は時間帯により変化し、例えば東京23区では20時頃が最も気温感応度が高く14時頃の1.5倍ほどある一方、3-8時頃は14時ごろの半分程度というデータがある。また、冷房は屋外への排熱を伴うため、ヒートアイランドに拍車を掛ける面もある[参 8]。なお、冷房普及に伴い、年間を通してみた電力需要の中で夏季のピークは年々先鋭化(夏季と春季・秋季の差が拡大)する傾向にある[参 10]。なお、冬季は気温が高くなるほど、暖房需要が減少する。いくつかの研究報告によれば、気温上昇がエネルギーの年間消費量を減少させる都市もあれば増加させる都市もある。特に緯度が高い寒冷な都市ほど暖房需要の比率が高いため減少傾向が強まるほか、小さなスケールでは建物の用途による差も大きい。一般的には、冷房よりも暖房の方がエネルギー消費量は大きい一方で、都心部には気温上昇に対するエネルギー消費増加率が高い商業地や業務建物が多いため、都心部に限ると気温上昇はエネルギー消費を増加させる傾向にある。こうした研究はヒートアイランドよりも規模が大きな地球温暖化を念頭に置いたものが多い点に留意する必要がある[参 11]。各都市での研究を見ると、札幌市や東京都はヒートアイランドにより年間エネルギー消費量が削減されるとの報告がある[13]。全域で気温が1℃上昇したと仮定して行われた大阪府における研究では、大阪市内では冬季の暖房用ガス灯油使用に伴う消費エネルギー減少量よりも夏季の冷房用電力使用に伴う消費エネルギー増加量の方が多い一方、大阪市以外の府内では冬季の暖房用消費エネルギー減少量の方が多く、府全体では減少量の方が多いという結果が得られている[参 11]ヒートアイランドによる気温逆転層のため、都市では大気汚染物質がこのように滞留する
大気汚染への影響
夏季は都市内部から光化学オキシダント粒子状物質が排出・生成されて大気汚染が発生するが、ヒートアイランドは昼夜交代に伴う海陸風の移動を遅くし、風が弱い場所や風が収束する場所を作り出して空気を滞留させ、これらの汚染を悪化させる。都市の風下にあたる内陸部ではこの影響で周辺の郊外に比べて光化学オキシダントの濃度が高い傾向にある[参 8][参 9]。また冬季も都市内部から大気汚染が発生するが、ヒートアイランドは夜間生じる気温逆転層の下に都市混合層を作り出し、ドーム状の混合層の中で空気を滞留させ、同じく汚染を悪化させる[参 8][参 9]
生物への影響

生物季節の変化
桜の開花の早期化など。1989年大阪市でのソメイヨシノの開花時期調査では、低温だったことによる影響もあるが、市街中心部と大阪湾沿岸で1週間もの差が生じたという例がある[参 8]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:184 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef