ナトリウムチャネル
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

この選択性フィルターを形成する4残基はDEKAモチーフとして知られている[26]。ナトリウムチャネルの透過率は、outer charged ring(チャネルの細胞外側で荷電残基が環状に配置された領域)を構成する4つのカルボン酸残基、EEDDモチーフによって決定されている[26]。これらのカルボン酸のプロトン化はナトリウムチャネルのプロトンによる遮蔽の主要な駆動因子の1つであるが、他の残基もpH感受性に寄与している[27]。そのような残基の例としては主に心臓で発現するナトリウムチャネルNav1.5のC373があり、このチャネルはこれまで研究されたナトリウムチャネルの中で最もpH感受性が高いものである[28]
pHによるゲート機能の調節

心臓のナトリウムチャネルNav1.5は最もpH感受性の高いナトリウムチャネルであり、知見の大部分はこのチャネルに基づいている。細胞外のpHの低下は活性化と不活性化の電位依存性を脱分極側へシフトさせる。そのため運動など血液のpHが低下する活動の間は、チャネルの活性化と不活性化がより正電位側で起こる可能性が高くなり、その悪影響が生じる可能性がある[29]。骨格筋線維で発現しているナトリウムチャネルNav1.4は、比較的pH感受性が低くなる方向へ進化している。運動中の血液のpHレベルは極めて変動しやすいものの、骨格筋ではこのような過剰または過小な興奮に対する保護機構が存在していることが示唆される[30][31]。近年、骨格筋ナトリウムチャネルNav1.4の変異には周期的な麻痺と筋強直を引き起こすものがあり、この変異では本来はpH感受性を持たないチャネルに感受性が付与され、心臓型のサブタイプと似たゲート機構となっていることが示されている[32]
サブタイプ間でのpHによる調節の比較

プロトン化の影響はNav1.1からNav1.5で特徴づけが行われている。これらのチャネルのうち、Nav1.1からNav1.3、Nav1.5はアシドーシスによって活性化の電位依存性が脱分極側へ変化するが、Nav1.4は非感受性である。定常状態での速い不活性化(fast inactivation)の電位依存性はNav1.1からNav1.4ではpHによる変化は起こらないが、Nav1.5では脱分極側へのシフトがみられる。したがって、これまで研究が行われているナトリウムチャネルの中では、Nav1.5が最もプロトン感受性が高く、Nav1.4が最も感受性が低いサブタイプである[33]
進化

電位依存性ナトリウムチャネルは、現存する生物種の中で最も動物に近縁な単細胞生物であるとされる襟鞭毛虫のメンバーにも存在する[34][35]。このことから、ナトリウムチャネルは動物界で中核的な役割を果たす多くのタンパク質の1つであるものの、多細胞性を獲得する以前に進化したものであると考えられる[36]。4つのドメインからなる動物型の電位依存性ナトリウムチャネルは、単一サブユニットからなるイオンチャネル、おそらくカリウムイオンを透過するチャネルから、2度の重複を経て進化したと考えられる[37]。このモデルは4つのドメインのうちIとIII、IIとIVの類似性がより高いことから支持され、1度目の重複によって誕生した2ドメインからなる中間体は2つのドメイン間に十分な差異が生じるほど長期間存在したことが示唆される。2度目の重複の結果、2つの類似したセットからなる4ドメインのチャネルが形成された[37]。この4ドメインからなるチャネルは主にカルシウムを透過するものであったと考えられており、ナトリウムに対する選択性はその後に細菌型ナトリウムチャネルとは独立して獲得されたと考えられている[38][39]無脊椎動物からの多様化の後、脊椎動物の系統では2度の全ゲノム重複によって4つのナトリウムチャネルの遺伝子パラログが生じ、それらのすべてが保存されている[40][41]真骨類四肢動物の分化の後、真骨類では3度目の全ゲノム重複が生じたようであり、現代の魚類の多くは8つのナトリウムチャネルのパラログを発現している[40]。現代の哺乳類の10個のパラログは、四肢動物の共通祖先に存在した4つのパラログのうちの2つが平行型または入れ子型の遺伝子重複を繰り返した結果生じたと考えられている[41]
出典^ Jessell TM, Kandel ER, Schwartz JH (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. pp. 154?69. .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}ISBN 978-0-8385-7701-1. https://archive.org/details/isbn_9780838577011 
^ Bertil Hillel (2001). Ion Channels of Excitable Membranes (3rd ed.). Sunderland, Mass: Sinauer. pp. 73?7. ISBN 978-0-87893-321-1 
^ “Overview of the voltage-gated sodium channel family”. Genome Biology 4 (3): 207. (2003). doi:10.1186/gb-2003-4-3-207. PMC 153452. PMID 12620097. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153452/. 
^ Nicholls, Martin, Fuchs, Brown, Diamond, Weisblat. (2012) "From Neuron to Brain," 5th ed. pg. 86
^ Cardiac electrophysiology methods and models. Sigg, Daniel C.. New York: Springer. (2010). ISBN 978-1-4419-6658-2. OCLC 676697531. https://www.worldcat.org/oclc/676697531 
^ a b “Sodium channel beta subunits: anything but auxiliary”. The Neuroscientist 7 (1): 42?54. (February 2001). doi:10.1177/107385840100700108. PMID 11486343. 
^ “IUPHAR - International Union of Basic & Clinical Pharmacology” (英語). 2019年12月1日閲覧。
^ “International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels”. Pharmacological Reviews 57 (4): 397?409. (December 2005). doi:10.1124/pr.57.4.4. PMID 16382098. 
^ Lossin C. “SCN1A infobase”. 2011年7月21日時点の ⇒オリジナルよりアーカイブ。2009年10月30日閲覧。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:65 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef