トロンビン
[Wikipedia|▼Menu]
Ensembl


ENSG00000180210


ENSMUSG00000027249

UniProt


P00734


P19221

RefSeq
(mRNA)


NM_000506
NM_001311257


NM_010168

RefSeq
(タンパク質)


NP_000497


NP_034298

場所
(UCSC)Chr 11: 46.72 ? 46.74 MbChr 11: 91.46 ? 91.47 Mb
PubMed検索[3][4]
ウィキデータ

閲覧/編集 ヒト閲覧/編集 マウス

血液凝固カスケードにおけるトロンビンの役割

トロンビン(Thrombin、第IIa因子とも)は、血液の凝固に関わる酵素セリンプロテアーゼ)の一種。EC番号EC 3.4.21.5であり、フィブリノゲンフィブリンにする反応を触媒する。ヒトの場合、11番染色体のp11-q12に存在するF2遺伝子にコードされる[5][6]

トロンビンは血液中に存在するプロトロンビン(第II因子)が第V因子によって活性化されることによって生まれる。第V因子、第VIII因子及び第IX因子活性化させるので凝血反応の中核的な存在であり、血液凝固を阻止する際にはこの酵素の働きを止めることが重要である。

また血小板を活性化することで凝血を促進する機能もある。この場合には血小板表面の受容体Gタンパク質共役型受容体)を介して働く。
歴史

フィブリノゲンとフィブリンが記載された後、1872年にアレクサンダー・シュミット(英語版)はフィブリノゲンをフィブリンに変換する酵素が存在するという仮説を立てた[7]

プロトロンビンはペケルハリング(ドイツ語版、英語版)によって1894年に発見された[8][9][10]
生理学
合成

トロンビンは、活性化第X因子(第Xa因子)によってプロトロンビンが2ヶ所切断されることで産生される。第Xa因子の活性は、活性化第V因子(第Va因子)に結合してプロトロンビナーゼと呼ばれる複合体を形成することで大きく向上する。プロトロンビンは肝臓で産生され、ビタミンK依存的反応による修飾が翻訳と同時に行われる。この反応によってN末端に位置する10-12個のグルタミン酸残基がγ-カルボキシグルタミン酸(Gla)残基へと変換される[11]カルシウム存在下において、Gla残基はプロトロンビンのリン脂質への結合を促進する。ビタミンK欠乏症または抗凝固薬ワルファリンの投与によってGla残基の形成が阻害され、血液凝固カスケードの活性化は遅れる。

成人の正常な血中トロンビン活性は1.1 units/mL程度である。トロンビン活性は出生後1日では0.5 units/mL程度、6ヶ月では0.9 units/mL程度と、出生から成人レベルに達するまで次第に上昇していく[12]
作用機構

血液凝固経路において、トロンビンは第XI因子を第XIa因子へ、第VIII因子を第VIIIa因子へ、第V因子を第Va因子へ、フィブリノゲンをフィブリンへ、第XIII因子を第XIIIa因子へ変換する。第XIIIa因子は、フィブリンのリジン残基とグルタミン残基の間の共有結合の形成を触媒するトランスグルタミナーゼである。共有結合はフィブリン血栓の安定性を増大させる。

またトロンビンは、血小板細胞膜に位置するプロテアーゼ受容体の活性化を介して血小板の活性化と凝集を促進する。
ネガティブフィードバック

トロンビンはトロンボモジュリンと相互作用する[13][14]

トロンボモジュリンに結合したトロンビンは、血液凝固カスケードの阻害剤であるプロテインCを活性化する。プロテインCの活性化は、上皮細胞で発現している膜貫通タンパク質トロンボモジュリンにトロンビンが結合することで大きく上昇する。活性化されたプロテインCは第Va因子と第VIIIa因子を不活性化する。活性化プロテインCへのプロテインSの結合は、その活性を小幅な上昇をもたらす。トロンビンは、セリンプロテアーゼインヒビターアンチトロンビンによっても不活性化される。
構造プロトロンビンのGlaドメインを介した膜への固定[15]

プロトロンビンの分子量は約72,000である。プロトロンビンは、N末端のGlaドメイン、2つのクリングルドメイン(英語版)、C末端のトリプシン様セリンプロテアーゼドメインという4つのドメインから構成される。第V因子をコファクターとして結合した第Xa因子は、プロトロンビンをGlaドメインと2つのクリングルドメイン(合わせてフラグメント1.2と呼ばれる)と、セリンプロテアーゼドメインのみからなるトロンビンへ切断する[16]。トロンビンの分子量は約36,000で、構造的にはプロテアーゼのPAクラン(英語版)に属する。

全てのセリンプロテアーゼと同様、プロトロンビンはタンパク質内部のペプチド結合の分解によって活性型のトロンビンへと変換され、新たなN末端としてイソロイシンアミノ基が露出する。セリンプロテアーゼの活性化の歴史的なモデルでは、この新たに形成されたN末端がβバレル構造の中へ挿入され、触媒残基の正しいコンフォメーションの形成が促進されると考えられてきた[17]。活性型トロンビンの結晶構造が示すのとは異なり、水素重水素交換(英語版)質量分析の研究からはアポ型のトロンビンではN末端はβバレルに挿入されていないことが示された。トロンボモジュリンの活性型フラグメントの結合がアロステリックに作用し、N末端領域を挿入してトロンビンの活性型コンフォメーションを促進しているようである[18]
遺伝子

トロンビン(プロトロンビン)の遺伝子は11番染色体(11p11-q12)に位置する[5]

先天性の第II因子欠乏症と診断された人は世界に30人いると推計されている[19]。これは第II因子の変異プロトロンビンG20210A変異(英語版)とは異なる。プロトロンビンG20210A変異も先天性である[20]

プロトロンビンG20210A変異は通常他の因子の変異を伴わない(最も多いのは第V因子ライデン変異(英語版)である)。この変異はヘテロ接合型、また稀にホモ接合型として遺伝するが、性や血液型とは無関係である。ホモ接合型変異はヘテロ接合型変異よりも血栓症のリスクを増大させるが、相対的なリスクの増大の程度についてはあまり解明されていない。経口避妊薬の使用は相加的に血栓症のリスクとなる可能性がある。以前に報告されていた炎症性腸疾患クローン病潰瘍性大腸炎など)とプロトロンビンG20210Aや第V因子ライデン変異との関係は、研究によって矛盾する結果が得られている[21]
疾患における役割

プロトロンビンの活性化は、生理学的・病理学的な血液凝固において重要である。プロトロンビンが関与するさまざまな希少疾患が記載されている(低プロトロンビン血症(英語版)など)。自己免疫疾患においては、抗プロトロンビン抗体はループスアンチコアグラント(英語版)を形成する因子となり、抗リン脂質抗体症候群としても知られている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:62 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef