ダイヤモンド
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

靱性は水晶と同じ7.5であり、ルビーサファイアの8よりも低い[10]。ダイヤモンドの靱性は大きくないので、瞬時に与えられる力に対しては弱く、金鎚(ハンマー)で上から叩けば粉々に割れてしまう[10]

ここで言う安定性とは薬品光線などによる変化に対する強さの事である。ダイヤモンドは硫酸塩酸などにも変化せず、日光に長年さらされても変化は起きない。熱力学的には25 °C、105 Paの下でエンタルピーで1.895 kJ/mol、ギブス自由エネルギーで2.900 kJ/molそれぞれグラファイトより高く不安定であり[11]、27 °Cでは約15,000気圧以上の高圧下で安定となる。ただし常温常圧において相互の転移速度は観測不能であるほど充分に遅く、常温常圧では準安定状態とされる[12]

また、3次元性の結晶構造なのでグラファイトなどに備わっている自己潤滑性はない。
ダイヤモンドより硬い物質

ダイヤモンドの炭素原子が一部窒素原子に置換された立方晶窒化炭素は、ダイヤモンド以上の硬度を持つ可能性があると予測されている[13]。さらに、六方晶ダイヤモンドとの別名を持つロンズデーライトは、ダイヤモンドよりも58 %高い硬度を持つことが計算により予想されている[14]。人工素材と含めると、2009年時点で存在するダイヤモンドより硬い物質は、ハイパーダイヤモンドで市販の多結晶質ダイヤモンドの3倍程度の硬さ[15][16]。また同程度の硬さの物質は超硬度ナノチューブがある。詳細は「超硬度材料」を参照ダイヤモンドの結晶構造ダイヤモンドの結晶を回転したところ
硬い理由

ダイヤモンドの硬さは、炭素原子同士が作る共有結合に由来する。ダイヤモンドでは1つの炭素原子が正四面体の中心にあるとすると、最近接の炭素原子はその四面体の頂点上に存在する。頂点上の炭素原子それぞれがsp3混成軌道によって結合しており、幾何的に理想的な角度であるため全く歪みが無い。その結合長は0.154 nmである。この結晶構造を持つダイヤを立方晶ダイヤとよぶ。一方で、炭素の同素体であるグラファイト(石墨)は、層状の六方晶構造で、層内の炭素同士の結合はsp2混成軌道を形成している。この層内では共有結合を有し結合力は比較的強いが、層間はファンデルワールス結合であるため弱い。六方晶の構造を持つダイヤ(ロンズデーライト)も存在するが、不安定で地球上には隕石痕など非常に限られた場所でしかみつかっておらず、0.1 mmを超える大きさの単結晶は存在しない。純粋なものはダイヤモンドよりも硬いことが予想されるが、その性質はまだ分かっていないことも多い。
劈開性

ダイヤモンドには一定の面に沿って割れやすい性質(劈開性)がある(4方向に完全)。ダイヤモンドは、普通の物質や道具では傷つけられないと思われているが、「結晶方向に対する角度を考慮して瞬間的に大きな力を加える」「燃焼などの化学反応を人為的に促進する」などの方法で容易に壊すことができる。また傷があれば、カッターナイフを当てて軽く手で叩くだけで割れてしまう(ダイヤの原石のカットはこの手法で行われる)。
熱伝導「合成ダイヤモンド#熱伝導性」も参照

ダイヤモンドは熱伝導性が非常に高い。これは原子の熱振動フォノンとなって結晶中を伝わりやすいことによる。触ると冷たく感じるのはこのためである。ダイヤモンドテスターはこの性質を利用して考案され、ダイヤモンドの類似石から識別できる道具だが、合成モアッサナイトだけは識別できない。12Cと13Cではフォノンの振動数が異なり混在はフォノンを散乱させて熱伝導の妨げとなるため、12Cだけで合成された人工ダイヤモンドは天然ダイヤモンドより熱伝導が高くなる。

CVD人工ダイヤモンドの薄板を手で持ってを切ると、すぱすぱと切れる。それほどダイヤモンドが熱伝導性に優れるという[17]
電気伝導

バンドギャップは室温で5.47 eVであり、真性半導体として絶縁体だが、不純物を添加することによる不純物半導体化の試みがなされ、ホウ素添加によりp形、リン添加によりn形が得られている。その物性により、現在よりもはるかに高周波・高出力で動作する半導体素子や、バンドギャップを反映した深紫外線LEDが実現できるのではないかと期待されてきた。現在、自由励起子による波長235 nmの発光がダイヤモンドpn接合LEDにより、物質・材料研究機構産業技術総合研究所から報告されている。バンドギャップ温度依存性については報告があるが、半経験則による計算式で用いられているデバイ温度については、負の値があてがわれたり、式自体を意味のあるデバイ温度を用いるために修正したりして報告されており、未解決になっている。p形半導体ダイヤモンドでは、ホウ素添加濃度が1021 cm?3以上で極低温で超伝導となることが報告され、半導体による超伝導現象として現在盛んに研究されている。また、1019 cm?3以上では電気伝導がバンド伝導からホッピング伝導、そして濃度の上昇とともに活性化エネルギーがほとんどない金属的伝導になることが知られている。この不純物濃度と不純物準位との相関についても、不純物バンドやモットの金属・非金属転移と絡めて研究が進んでいる。このような半導体としての基礎的な議論が可能となってきた現在のダイヤモンドの半導体としての品質はシリコンと互角であると言えるが、制御性は今後の研究開発がさらに必要である。
親油性

ダイヤモンドは油になじみやすい性質(親油性)があり、この性質を利用してダイヤモンド原石とそうでないものを分ける作業もある。ジュエリーとして身に付けているうちに皮脂などの汚れがつくと、油の膜によって光がダイヤモンド内部に入らなくなり、輝きが鈍くなる。中性洗剤や洗顔料などで洗うと油が取れて、輝きが戻る。逆に水には全くなじまず、はじいてしまう[17]
カラーダイヤモンド「en:Diamond color」も参照イエロー・ダイヤモンド

ダイヤモンドは無色透明のものよりも、黄色みを帯びたものや褐色の場合が多い。結晶構造の歪みや、窒素 (N)、ホウ素 (B) などの元素によって着色する場合もある。無色透明のものほど価値が高く、黄色や茶色など色のついたものは価値が落ちるとされるが、ブルー・ダイヤモンド(英語版)やピンク・ダイヤモンド(英語版)、レッド・ダイヤモンド(英語版)、グリーンなどは稀少であり、無色のものよりも高価で取引される(緑はドレスデン・グリーンのように、放射線を長期にわたって受けたためである事が分かっている。ピンクは結晶構造のひずみによる)。また、低級とされるイエロー・ダイヤモンドでも、綺麗な黄色(カナリー・イエローと呼ばれる物など)であれば価値が高い。2010年に南アフリカで発見され、『サンドロップ (Sun-Drop)』と名付けられた110.03カラットのイエロー・ダイヤモンドに、サザビーズは「セイヨウナシの形をしており、装飾的で、光り輝くイエローダイヤとしては世界最大」と賞賛、最も希少で最も魅力的な「ファンシー・イエロー」の鑑定書を付けた。このダイヤは2011年11月、ジュネーブで行なわれた競売において、1000万スイス・フラン(約8億4000万)で落札された。20世紀末頃から、内包するグラファイトなどにより黒色不透明となったブラック・ダイヤモンド(ボルツ・ダイヤモンドとも呼ばれる)がアクセサリーとして評価され、高級宝飾店ティファニーなどの宝飾品に使用されている。

放射線処理により青や黒い色をつけた処理石も多い。最近ではアップルグリーン色のダイヤもあるがこれも高温高圧によって着色された処理石である。また、無色の(目立った色のない)ダイヤモンドに別の物質を蒸着することでコーティング処理した、安価な処理石もある。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:89 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef