ダイヤモンド
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

それが古代ローマのラテン語で adamans となり[4]中世ラテン語では変化形の diamas も使われて[4]、それが古フランス語へ入り[4]、古フランス語から中英語へと入り英語では diamond となった[4]。現在、イタリア語スペイン語ポルトガル語では diamante(ディアマンテ)、フランス語では diamant(ディアマン)、ポーランド語では diament(ディヤメント)、漢語表現では金剛石と鑽石(中国語のみ、簡体字中国語: ?石)という。ロシア語では диама?нт(ヂヤマント)というよりは алма?з(アルマース)という方が普通であるが、これは特に磨かれていないダイヤモンド原石のことを指す場合がある。磨かれたものについては бриллиа?нт(ブリリヤント)で総称されるのが普通。
性質詳細は「ダイヤモンドの物質特性」を参照
屈折率

ダイヤモンドの屈折率は2.42と高く、内部での全反射が起こりやすい。またダイヤモンドのカットとしてよく用いられるブリリアントカットでは、光を当ててその反射を見る時、次の3種類の輝きの相乗効果となり、美しく見える。
シンチレーション
チカチカとした輝き。表面反射によるもの。
ブリリアンシー
白く強いきらめき。ダイヤモンド内部に入った光が比較的少ない回数の反射をして戻ったもの。
ディスパーション
色の輝き。ダイヤモンド内部に入った光が反射を繰り返し、プリズム効果によって虹色となったもの。
硬度、割れる性質、安定性

ダイヤモンドの硬さは古くからよく知られ、工業的にも研磨切削など多くの用途に利用されている。ダイヤモンドは「天然の物質の中」では最高クラスのモース硬度摩擦やひっかき傷に対する強さ)10、ヌープ硬度でも飛び抜けて硬いことが知られている。ビッカース硬度は種類によって異なり、70 ? 150 GPaである[9]。ただし、ダイヤモンドより硬い物質はいくつか知られている。他の宝石や貴金属類と触れ合うような状態で持ち運んでいると、それらを傷つけてしまう事があるので配慮が必要となる。

宝石の耐久性の表し方は他にも靱性という割れや欠けに対する抵抗力などがある。靱性は水晶と同じ7.5であり、ルビーサファイアの8よりも低い[10]。ダイヤモンドの靱性は大きくないので、瞬時に与えられる力に対しては弱く、金鎚(ハンマー)で上から叩けば粉々に割れてしまう[10]

ここで言う安定性とは薬品光線などによる変化に対する強さの事である。ダイヤモンドは硫酸塩酸などにも変化せず、日光に長年さらされても変化は起きない。熱力学的には25 °C、105 Paの下でエンタルピーで1.895 kJ/mol、ギブス自由エネルギーで2.900 kJ/molそれぞれグラファイトより高く不安定であり[11]、27 °Cでは約15,000気圧以上の高圧下で安定となる。ただし常温常圧において相互の転移速度は観測不能であるほど充分に遅く、常温常圧では準安定状態とされる[12]

また、3次元性の結晶構造なのでグラファイトなどに備わっている自己潤滑性はない。
ダイヤモンドより硬い物質

ダイヤモンドの炭素原子が一部窒素原子に置換された立方晶窒化炭素は、ダイヤモンド以上の硬度を持つ可能性があると予測されている[13]。さらに、六方晶ダイヤモンドとの別名を持つロンズデーライトは、ダイヤモンドよりも58 %高い硬度を持つことが計算により予想されている[14]。人工素材と含めると、2009年時点で存在するダイヤモンドより硬い物質は、ハイパーダイヤモンドで市販の多結晶質ダイヤモンドの3倍程度の硬さ[15][16]。また同程度の硬さの物質は超硬度ナノチューブがある。詳細は「超硬度材料」を参照ダイヤモンドの結晶構造ダイヤモンドの結晶を回転したところ
硬い理由

ダイヤモンドの硬さは、炭素原子同士が作る共有結合に由来する。ダイヤモンドでは1つの炭素原子が正四面体の中心にあるとすると、最近接の炭素原子はその四面体の頂点上に存在する。頂点上の炭素原子それぞれがsp3混成軌道によって結合しており、幾何的に理想的な角度であるため全く歪みが無い。その結合長は0.154 nmである。この結晶構造を持つダイヤを立方晶ダイヤとよぶ。一方で、炭素の同素体であるグラファイト(石墨)は、層状の六方晶構造で、層内の炭素同士の結合はsp2混成軌道を形成している。この層内では共有結合を有し結合力は比較的強いが、層間はファンデルワールス結合であるため弱い。六方晶の構造を持つダイヤ(ロンズデーライト)も存在するが、不安定で地球上には隕石痕など非常に限られた場所でしかみつかっておらず、0.1 mmを超える大きさの単結晶は存在しない。純粋なものはダイヤモンドよりも硬いことが予想されるが、その性質はまだ分かっていないことも多い。
劈開性

ダイヤモンドには一定の面に沿って割れやすい性質(劈開性)がある(4方向に完全)。ダイヤモンドは、普通の物質や道具では傷つけられないと思われているが、「結晶方向に対する角度を考慮して瞬間的に大きな力を加える」「燃焼などの化学反応を人為的に促進する」などの方法で容易に壊すことができる。また傷があれば、カッターナイフを当てて軽く手で叩くだけで割れてしまう(ダイヤの原石のカットはこの手法で行われる)。
熱伝導「合成ダイヤモンド#熱伝導性」も参照

ダイヤモンドは熱伝導性が非常に高い。これは原子の熱振動フォノンとなって結晶中を伝わりやすいことによる。触ると冷たく感じるのはこのためである。ダイヤモンドテスターはこの性質を利用して考案され、ダイヤモンドの類似石から識別できる道具だが、合成モアッサナイトだけは識別できない。12Cと13Cではフォノンの振動数が異なり混在はフォノンを散乱させて熱伝導の妨げとなるため、12Cだけで合成された人工ダイヤモンドは天然ダイヤモンドより熱伝導が高くなる。

CVD人工ダイヤモンドの薄板を手で持ってを切ると、すぱすぱと切れる。それほどダイヤモンドが熱伝導性に優れるという[17]
電気伝導

バンドギャップは室温で5.47 eVであり、真性半導体として絶縁体だが、不純物を添加することによる不純物半導体化の試みがなされ、ホウ素添加によりp形、リン添加によりn形が得られている。その物性により、現在よりもはるかに高周波・高出力で動作する半導体素子や、バンドギャップを反映した深紫外線LEDが実現できるのではないかと期待されてきた。現在、自由励起子による波長235 nmの発光がダイヤモンドpn接合LEDにより、物質・材料研究機構産業技術総合研究所から報告されている。バンドギャップ温度依存性については報告があるが、半経験則による計算式で用いられているデバイ温度については、負の値があてがわれたり、式自体を意味のあるデバイ温度を用いるために修正したりして報告されており、未解決になっている。p形半導体ダイヤモンドでは、ホウ素添加濃度が1021 cm?3以上で極低温で超伝導となることが報告され、半導体による超伝導現象として現在盛んに研究されている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:89 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef